The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized tha...The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.展开更多
This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement sp...This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.展开更多
This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum...This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
Nitrate nitrogen(NO_(3)^(-)N)from agricultural activities and in industrial wastewater has become the main source of groundwater pollution,which has raised widespread concerns,particularly in arid and semi-arid river ...Nitrate nitrogen(NO_(3)^(-)N)from agricultural activities and in industrial wastewater has become the main source of groundwater pollution,which has raised widespread concerns,particularly in arid and semi-arid river basins with little water that meets relevant standards.This study aimed to investigate the performance of spatial and non-spatial regression models in modeling nitrate pollution in a semi-intensive farming region of Iran.To perform the modeling of the groundwater's NO_(3)^(-)N concentration,both natural and anthropogenic factors affecting groundwater NO_(3)^(-)N were selected.The results of Moran's I test showed that groundwater nitrate concentration had a significant spatial dependence on the density of wells,distance from streams,total annual precipitation,and distance from roads in the study area.This study provided a way to estimate nitrate pollution using both natural and anthropogenic factors in arid and semi-arid areas where only a few factors are available.Spatial regression methods with spatial correlation structures are effective tools to support spatial decision-making in water pollution control.展开更多
There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteri...There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.展开更多
To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm ...To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.展开更多
In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic informatio...In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.展开更多
Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP mo...Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G\|GTP is used for the real\|3D modeling of subsurface geological bodies, and E\|GTP is used for the real\|3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E 2 GIS, the modeling principles of G\|GTP and E\|GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object\|oriented integral real\|3D data model and integral spatial topological relations are discussed.展开更多
The spatialization of population of counties in China is significant. Firstly, we can gain the estimated values of population density adaptive to different kinds of regions. Secondly, we can integrate effectively popu...The spatialization of population of counties in China is significant. Firstly, we can gain the estimated values of population density adaptive to different kinds of regions. Secondly, we can integrate effectively population data with other data including natural resources, environment, society and economy, build 1km GRIDs of natural resources reserves per person, population density and other economic and environmental data, which are necessary to the national management and macro adjustment and control of natural resources and dynamic monitoring of population. In order to establish population information system serving national decision making, three steps ought to be followed:1) establishing complete geographical spatial data foundation infrastructure including the establishment of electric map of residence with high resolution using topographical map with large scale and high resolution satellite remote sensing data, the determination of attribute information of housing and office buildings, and creating complete set of attribute database and rapid data updating; 2) establishing complete census systems including improving the transformation efficiency from census data to digital database and strengthening the link of census database and geographical spatial database, meanwhile, the government should attach great importance to the establishment and integration of population migration database; 3) considering there is no GIS software specially serving the analysis and management of population data, a practical approach is to add special modules to present software system, which works as a bridge actualizing the digitization and spatialization of population geography research.展开更多
Daihai Lake, a modern lacustrine rift basin, located in Inner Mongolia, North China, serves as an important modern analog for understanding deltaic depositional processes in an active rift setting. Two of the deltas ...Daihai Lake, a modern lacustrine rift basin, located in Inner Mongolia, North China, serves as an important modern analog for understanding deltaic depositional processes in an active rift setting. Two of the deltas (Yuanzigou delta and Bulianghe delta) on the margins of Daihai Lake were surveyed to compare and contrast stacking patterns using aerial photographs, field trenching and sediment sampling. Shallow cores and trench data collected from the margins of Daihai Lake indicate that a variety of depositional processes have been active since Daihai Lake formed. Two 3-D sedimentation models which employ chronostratigraphic correlation technique were generated. The chronostratigraphic sedimentation models predict and represent the architectures and sand-body continuity of sediments. Stratigraphical coincidence of the broad sheeted drifts and channel erosion suggests a coupling between downslope and alongslope processes. Distributary mouth bars are prevalent in the front of deltas on steeper slopes due to the dominance of down-slope flows. On the contrary, the along-slope currents favor the development of distal bar deposits with sheeted sandbodies on gentle depositional slopes. This study provides an insight into the architecture of complex sedimentary facies associated with highlighting key differences between downslope flows and alongslope currents. The distribution of sand within these deltas is of particular interests, with applications in understanding the architecture of hydrocarbon reservoirs formed in lacustrine rift basin.展开更多
Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two archite...Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding.展开更多
The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis...The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis of equilibrium points without any reference to when or how to achieve it. In this paper, a dynamic gravity model was established based on the Maximum Entropy(MaxEnt) theory to estimate and monitor the interconnection intensity and dynamic characters of bilateral relations. In order to detect the determinants of interconnection intensity, a Geodetector method was applied to identify and evaluate the determinants of spatial networks in five dimensions. The empirical study clearly demonstrates a heterogeneous and non-circular spatial structure. The main driving forces of spatial-temporal evolution are foreign direct investment, tourism and railway infrastructure construction, while determinants in different sub-regions show obvious spatial differentiation. Southeast Asian countries are typically multi-island area where aviation infrastructure plays a more important role. North and Central Asian countries regard oil as a pillar industry where power and port facilities have a greater impact on the interconnection. While Western Asian countries are mostly influenced by the railway infrastructure, Eastern European countries already have relatively robust infrastructure where tariff policies provide a greater impetus.展开更多
Cold storage is the vital infrastructure of cold chain logistics. In this study, we analyzed the spatial pattern evolution characteristics, spatial autocorrelation and influencing factors of cold storage in China by u...Cold storage is the vital infrastructure of cold chain logistics. In this study, we analyzed the spatial pattern evolution characteristics, spatial autocorrelation and influencing factors of cold storage in China by using kernel density estimation(KDE), spatial autocorrelation analysis(SAA), and spatial error model(SEM). Results showed that: 1) the spatial distribution of cold storage in China is unbalanced, and has evolved from ‘one core’ to ‘one core and many spots’, that is, ‘one core’ refers to the Bohai Rim region mainly including Beijing, Tianjin, Hebei, Shandong and Liaoning regions, and ‘many spots’ mainly include the high-density areas such as Shanghai, Fuzhou, Guangzhou, Zhengzhou, Hefei, Wuhan, ürümqi. 2) The distribution of cold storage has significant global spatial autocorrelation and local spatial autocorrelation, and the ‘High-High’ cluster area is the most stable, mainly concentrated in the Bohai Rim;the ‘Low-Low’ cluster area is grouped in the southern China. 3) Economic development level, population density, traffic accessibility, temperature and land price, all affect the location choice of cold storage in varying degrees, while the impact of market demand on it is not explicit.展开更多
Exploring long-term residence among the urban floating population is crucial to understanding urban growth in China,particularly since the 2008 financial crisis.By using China Migrants Dynamic Survey data for 2012–20...Exploring long-term residence among the urban floating population is crucial to understanding urban growth in China,particularly since the 2008 financial crisis.By using China Migrants Dynamic Survey data for 2012–2014,China Labor-force Dynamics Survey data for 2014–2016,and macroscale urban matched data,we analyzed the spatial pattern of long-term residential behavior in China’s urban floating population in 2012–2016 and developed an urban spatial utility equilibrium model containing‘macro’urban factors and‘micro’individual and household factors to explain the pattern.The results first revealed that long-term residence is defined as≥6 yr for the urban floating population in China.Second,members of this population are more likely to be long-term residents of the megacities in the three urban agglomerations in eastern China as well as of small and medium-sized cities in western and northeastern China,whereas short-term residence is more likely in cities in central China and near the three urban agglomerations.Third,urban population density and housing prices,both have a significant U-shaped effect,are main factors affecting the spatial pattern of long-term residence.展开更多
In this study,an inventory analysis approach was used to investigate the intensity of agricultural non-point source pollution(ANSP)and its spatial convergence at national and provincial levels in China from 1999 to 20...In this study,an inventory analysis approach was used to investigate the intensity of agricultural non-point source pollution(ANSP)and its spatial convergence at national and provincial levels in China from 1999 to 2017.On this basis,spatial factors affecting ANSP were explored by constructing a spatial econometric model.The results indicate that:1)The intensity of China's ANSP emission showed an overall upward trend and an obvious spatial difference,with the values being high in the eastern and central regions and relatively low in the western region.2)Significant spatial agglomeration was shown in China's ANSP intensity,and the agglomeration effect was increasing gradually.3)In the convergence analysis,a spatial lag model was found applicable for interpretation of the ANSP intensity,with the convergence rate being accelerated after considering the spatial factors but slower than that of regional economic growth.4)The spatial factors affecting the ANSP intensity are shown to be reduced by improving agricultural infrastructure investment,labor-force quality,and crop production ratio,while the expansion of agricultural economy scale and precipitation and runoff have positive impact on ANSP in the study region.However,agricultural research and development(R&D)investment showed no direct significant effect on the ANSP intensity.Meanwhile,improving the quality of the labor force would significantly reduce the ANSP intensity in the surrounding areas,while the precipitation and runoff would significantly increase the pollution of neighboring regions.This research has laid a theoretical basis for formulation and optimization of ANSP prevention strategies in China and related regions.展开更多
The spatial distribution of overburden strata failure is of significant importance to affect the safety of underground mining. Because the traditional methods cannot be applied in all coal mines due to geological cond...The spatial distribution of overburden strata failure is of significant importance to affect the safety of underground mining. Because the traditional methods cannot be applied in all coal mines due to geological conditions or mining structures, a method of coupling FLAC3D with GIS was presented to calculate the spatial distribution of overburden strata failure in longwall coal mines. After building the spatio-temporal database from the calculation results of FLAC3D, the height of the mining-induced fractured zone in the overburden strata can be calculated by using the given height function. The results of case study show that the height of the fractured zone reached the maximum value at the face advance equal to about the panel width. The outcome of the work presented will be helpful in practice to improve safety in the production.展开更多
The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we ...The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.展开更多
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo...In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.展开更多
This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199...This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.展开更多
基金supported in part by the NIH grant R01CA241134supported in part by the NSF grant CMMI-1552764+3 种基金supported in part by the NSF grants DMS-1349724 and DMS-2052465supported in part by the NSF grant CCF-1740761supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R&D Grant 309273supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.
文摘The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.
文摘This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.
基金financially supported by the research special fund of public service sector from the Ministry of Land and Resources (No. 201111008)
文摘This paper discusses the enrichment and depletion regularities for porphyry coppermolybdenum ore deposits in different regions and varied deposit genetic types in the same area, taking three porphyry copper-molybdenum ore deposits (i.e., the Chengmenshan in Jiangxi, Wunugetushan in Inner Mongolia, Baishantang in Gansu) and two copper deposits in Gansu Province (the Huitongshan skarn deposit and Gongpoquan composite deposit) as case studies. The results show that porphyry Cu-Mo deposits or skarn copper deposits include both enrichment of the ore-forming elements and associated elements, and depletion of some lithophile dispersed elements, rare earth elements (REE) and some major elements. And the depleted elements vary with deposits, having generality and their own features. On a deposit scale, the positive anomalies of enriched elements and negative anomalies of depleted elements follow in a sequence to comprise regular anomaly models of spatial structures. The exploration in the Tongchang deposit in Jiangxi and Huitongshan deposit in Gansu suggests that anomaly models play a key role in the identification of mineral occurrences and deposits compared to one single enriched element anomaly. And the anomaly models exert a critical effect on the optimization of prospecting targets and their potential evaluation.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
文摘Nitrate nitrogen(NO_(3)^(-)N)from agricultural activities and in industrial wastewater has become the main source of groundwater pollution,which has raised widespread concerns,particularly in arid and semi-arid river basins with little water that meets relevant standards.This study aimed to investigate the performance of spatial and non-spatial regression models in modeling nitrate pollution in a semi-intensive farming region of Iran.To perform the modeling of the groundwater's NO_(3)^(-)N concentration,both natural and anthropogenic factors affecting groundwater NO_(3)^(-)N were selected.The results of Moran's I test showed that groundwater nitrate concentration had a significant spatial dependence on the density of wells,distance from streams,total annual precipitation,and distance from roads in the study area.This study provided a way to estimate nitrate pollution using both natural and anthropogenic factors in arid and semi-arid areas where only a few factors are available.Spatial regression methods with spatial correlation structures are effective tools to support spatial decision-making in water pollution control.
基金Under the auspices of National Social Science Foundation of China (No.21BJY202)。
文摘There are significant differences between urban and rural bed-and-breakfasts(B&Bs)in terms of customer positioning,economic strength and spatial carrier.Accurately identifying the differences in spatial characteristics and influencing factors of each type,is essential for creating urban and rural B&B agglomeration areas.This study used density-based spatial clustering of applications with noise(DBSCAN)and the multi-scale geographically weighted regression(MGWR)model to explore similarities and differences in the spatial distribution patterns and influencing factors for urban and rural B&Bs on the Jiaodong Peninsula of China from 2010 to 2022.The results showed that:1)both urban and rural B&Bs in Jiaodong Peninsula went through three stages:a slow start from 2010 to 2015,rapid development from 2015 to 2019,and hindered development from 2019 to 2022.However,urban B&Bs demonstrated a higher development speed and agglomeration intensity,leading to an increasingly evident trend of uneven development between the two sectors.2)The clustering scale of both urban and rural B&Bs continued to expand in terms of quantity and volume.Urban B&B clusters characterized by a limited number,but a higher likelihood of transitioning from low-level to high-level clusters.While the number of rural B&B clusters steadily increased over time,their clustering scale was comparatively lower than that of urban B&Bs,and they lacked the presence of high-level clustering.3)In terms of development direction,urban B&B clusters exhibited a relatively stable pattern and evolved into high-level clustering centers within the main urban areas.Conversely,rural B&Bs exhibited a more pronounced spatial diffusion effect,with clusters showing a trend of multi-center development along the coastline.4)Transport emerged as a common influencing factor for both urban and rural B&Bs,with the density of road network having the strongest explanatory power for their spatial distribution.In terms of differences,population agglomeration had a positive impact on the distribution of urban B&Bs and a negative effect on the distribution of rural B&Bs.Rural B&Bs clustering was more influenced by tourism resources compared with urban B&Bs,but increasing tourist stay duration remains an urgent issue to be addressed.The findings of this study could provide a more precise basis for government planning and management of urban and rural B&B agglomeration areas.
文摘To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.
基金supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)Project of Environmental Business Big Data Platform and Center Construction funded by the Ministry of Science and ICT。
文摘In this study,we developed multiple hybrid machine-learning models to address parameter optimization limitations and enhance the spatial prediction of landslide susceptibility models.We created a geographic information system database,and our analysis results were used to prepare a landslide inventory map containing 359 landslide events identified from Google Earth,aerial photographs,and other validated sources.A support vector regression(SVR)machine-learning model was used to divide the landslide inventory into training(70%)and testing(30%)datasets.The landslide susceptibility map was produced using 14 causative factors.We applied the established gray wolf optimization(GWO)algorithm,bat algorithm(BA),and cuckoo optimization algorithm(COA)to fine-tune the parameters of the SVR model to improve its predictive accuracy.The resultant hybrid models,SVR-GWO,SVR-BA,and SVR-COA,were validated in terms of the area under curve(AUC)and root mean square error(RMSE).The AUC values for the SVR-GWO(0.733),SVR-BA(0.724),and SVR-COA(0.738)models indicate their good prediction rates for landslide susceptibility modeling.SVR-COA had the greatest accuracy,with an RMSE of 0.21687,and SVR-BA had the least accuracy,with an RMSE of 0.23046.The three optimized hybrid models outperformed the SVR model(AUC=0.704,RMSE=0.26689),confirming the ability of metaheuristic algorithms to improve model performance.
文摘Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G\|GTP is used for the real\|3D modeling of subsurface geological bodies, and E\|GTP is used for the real\|3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E 2 GIS, the modeling principles of G\|GTP and E\|GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object\|oriented integral real\|3D data model and integral spatial topological relations are discussed.
文摘The spatialization of population of counties in China is significant. Firstly, we can gain the estimated values of population density adaptive to different kinds of regions. Secondly, we can integrate effectively population data with other data including natural resources, environment, society and economy, build 1km GRIDs of natural resources reserves per person, population density and other economic and environmental data, which are necessary to the national management and macro adjustment and control of natural resources and dynamic monitoring of population. In order to establish population information system serving national decision making, three steps ought to be followed:1) establishing complete geographical spatial data foundation infrastructure including the establishment of electric map of residence with high resolution using topographical map with large scale and high resolution satellite remote sensing data, the determination of attribute information of housing and office buildings, and creating complete set of attribute database and rapid data updating; 2) establishing complete census systems including improving the transformation efficiency from census data to digital database and strengthening the link of census database and geographical spatial database, meanwhile, the government should attach great importance to the establishment and integration of population migration database; 3) considering there is no GIS software specially serving the analysis and management of population data, a practical approach is to add special modules to present software system, which works as a bridge actualizing the digitization and spatialization of population geography research.
基金supported by the Chinese National Natural Science Fund Project(41072084)National Program on Key Basic Research Project(973 Program)(No. 2009CB219502-3)Prof.Qiu Yinan at RIPED(Research Institute for Petroleum Exploration and Development) of CNPC(China National Petroleum Corporation) for his belief in this work and financial support of the research
文摘Daihai Lake, a modern lacustrine rift basin, located in Inner Mongolia, North China, serves as an important modern analog for understanding deltaic depositional processes in an active rift setting. Two of the deltas (Yuanzigou delta and Bulianghe delta) on the margins of Daihai Lake were surveyed to compare and contrast stacking patterns using aerial photographs, field trenching and sediment sampling. Shallow cores and trench data collected from the margins of Daihai Lake indicate that a variety of depositional processes have been active since Daihai Lake formed. Two 3-D sedimentation models which employ chronostratigraphic correlation technique were generated. The chronostratigraphic sedimentation models predict and represent the architectures and sand-body continuity of sediments. Stratigraphical coincidence of the broad sheeted drifts and channel erosion suggests a coupling between downslope and alongslope processes. Distributary mouth bars are prevalent in the front of deltas on steeper slopes due to the dominance of down-slope flows. On the contrary, the along-slope currents favor the development of distal bar deposits with sheeted sandbodies on gentle depositional slopes. This study provides an insight into the architecture of complex sedimentary facies associated with highlighting key differences between downslope flows and alongslope currents. The distribution of sand within these deltas is of particular interests, with applications in understanding the architecture of hydrocarbon reservoirs formed in lacustrine rift basin.
基金conducted by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)funded by the Ministry of Science and ICT。
文摘Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding.
基金the auspices of A Category of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA20010101)。
文摘The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis of equilibrium points without any reference to when or how to achieve it. In this paper, a dynamic gravity model was established based on the Maximum Entropy(MaxEnt) theory to estimate and monitor the interconnection intensity and dynamic characters of bilateral relations. In order to detect the determinants of interconnection intensity, a Geodetector method was applied to identify and evaluate the determinants of spatial networks in five dimensions. The empirical study clearly demonstrates a heterogeneous and non-circular spatial structure. The main driving forces of spatial-temporal evolution are foreign direct investment, tourism and railway infrastructure construction, while determinants in different sub-regions show obvious spatial differentiation. Southeast Asian countries are typically multi-island area where aviation infrastructure plays a more important role. North and Central Asian countries regard oil as a pillar industry where power and port facilities have a greater impact on the interconnection. While Western Asian countries are mostly influenced by the railway infrastructure, Eastern European countries already have relatively robust infrastructure where tariff policies provide a greater impetus.
基金Under the auspices of the National Social Science Fund of China(No.15BGL185,19XJL004)General Project of Humanities and Social Sciences Research and Planning Fund of Ministry of Education(No.19YJA790097)+1 种基金Social Science Fund of Fujian Province(No.FJ2017C080)A Key Discipline of Henan University of Animal Husbandry and Economy‘Business Enterprise Management’(No.MXK2016201)。
文摘Cold storage is the vital infrastructure of cold chain logistics. In this study, we analyzed the spatial pattern evolution characteristics, spatial autocorrelation and influencing factors of cold storage in China by using kernel density estimation(KDE), spatial autocorrelation analysis(SAA), and spatial error model(SEM). Results showed that: 1) the spatial distribution of cold storage in China is unbalanced, and has evolved from ‘one core’ to ‘one core and many spots’, that is, ‘one core’ refers to the Bohai Rim region mainly including Beijing, Tianjin, Hebei, Shandong and Liaoning regions, and ‘many spots’ mainly include the high-density areas such as Shanghai, Fuzhou, Guangzhou, Zhengzhou, Hefei, Wuhan, ürümqi. 2) The distribution of cold storage has significant global spatial autocorrelation and local spatial autocorrelation, and the ‘High-High’ cluster area is the most stable, mainly concentrated in the Bohai Rim;the ‘Low-Low’ cluster area is grouped in the southern China. 3) Economic development level, population density, traffic accessibility, temperature and land price, all affect the location choice of cold storage in varying degrees, while the impact of market demand on it is not explicit.
基金Under the auspices of National Natural Science Foundation of China(No.42001132)MOE(Ministry of Education in China)Project of Humanities and Social Sciences(No.20YJC790009)Natural Science Basic Research Program of Shannxi,China(No.2020JQ-838)。
文摘Exploring long-term residence among the urban floating population is crucial to understanding urban growth in China,particularly since the 2008 financial crisis.By using China Migrants Dynamic Survey data for 2012–2014,China Labor-force Dynamics Survey data for 2014–2016,and macroscale urban matched data,we analyzed the spatial pattern of long-term residential behavior in China’s urban floating population in 2012–2016 and developed an urban spatial utility equilibrium model containing‘macro’urban factors and‘micro’individual and household factors to explain the pattern.The results first revealed that long-term residence is defined as≥6 yr for the urban floating population in China.Second,members of this population are more likely to be long-term residents of the megacities in the three urban agglomerations in eastern China as well as of small and medium-sized cities in western and northeastern China,whereas short-term residence is more likely in cities in central China and near the three urban agglomerations.Third,urban population density and housing prices,both have a significant U-shaped effect,are main factors affecting the spatial pattern of long-term residence.
基金Under the auspices of Key Program of the National Social Science Fund of China(No.16ASH007)。
文摘In this study,an inventory analysis approach was used to investigate the intensity of agricultural non-point source pollution(ANSP)and its spatial convergence at national and provincial levels in China from 1999 to 2017.On this basis,spatial factors affecting ANSP were explored by constructing a spatial econometric model.The results indicate that:1)The intensity of China's ANSP emission showed an overall upward trend and an obvious spatial difference,with the values being high in the eastern and central regions and relatively low in the western region.2)Significant spatial agglomeration was shown in China's ANSP intensity,and the agglomeration effect was increasing gradually.3)In the convergence analysis,a spatial lag model was found applicable for interpretation of the ANSP intensity,with the convergence rate being accelerated after considering the spatial factors but slower than that of regional economic growth.4)The spatial factors affecting the ANSP intensity are shown to be reduced by improving agricultural infrastructure investment,labor-force quality,and crop production ratio,while the expansion of agricultural economy scale and precipitation and runoff have positive impact on ANSP in the study region.However,agricultural research and development(R&D)investment showed no direct significant effect on the ANSP intensity.Meanwhile,improving the quality of the labor force would significantly reduce the ANSP intensity in the surrounding areas,while the precipitation and runoff would significantly increase the pollution of neighboring regions.This research has laid a theoretical basis for formulation and optimization of ANSP prevention strategies in China and related regions.
基金provided by the National Natural Science Foundation of China(No.51374046)State Key Laboratory for Geo Mechanics and Deep Underground Engineering at China University of Mining&Technology(SKLGDUEK1420)
文摘The spatial distribution of overburden strata failure is of significant importance to affect the safety of underground mining. Because the traditional methods cannot be applied in all coal mines due to geological conditions or mining structures, a method of coupling FLAC3D with GIS was presented to calculate the spatial distribution of overburden strata failure in longwall coal mines. After building the spatio-temporal database from the calculation results of FLAC3D, the height of the mining-induced fractured zone in the overburden strata can be calculated by using the given height function. The results of case study show that the height of the fractured zone reached the maximum value at the face advance equal to about the panel width. The outcome of the work presented will be helpful in practice to improve safety in the production.
基金State Key Laboratory of Information Engineering in Surveying Mapping and Remote SensingNo.WKL((020)0302)
文摘The spatial calculating analysis model is based on GIS overlay. It will compartmentalize the land in research district into three spatial types: unchanged parts, converted parts and increased parts. By this method we can evaluate the numerical model and dynamic degree model for calculating land-use change rates. Furthermore, the paper raises the possibility of revising the calculating analysis model of spatial information in order to predicate more precisely the dynamic changing level of all types of land uses. In the most concrete terms, the model is used mainly to understand changed area and changed rates (increasing or decreasing) of different land types from microcosmic angle and establish spatial distribution and spatio-temporal principles of the changing urban lands. And we will try to find out why the situation can take place by combining social and economic situations. The result indicates the calculating analysis model of spatial information can derive more accurate procedure of spatial transference and increase of all kinds of land from microcosmic angle. By this model and technology we can conduct the research of land-use spatio-temporal structure evolution more systematically and more deeply, and can obtain a satisfactory result. The result will benefit the rational planning and management of urban land use of developed coastal areas in China in the future.
基金National Natural Science Foundation of China Under Grant No. 50478112
文摘In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods.
基金Under the auspices of National Natural Science Foundation of China(No.40601073,41101192,41201571)Fundamental Research Funds for the Central Universities(No.2011PY112,2011QC041,2011QC091)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2011SC21)
文摘This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.