期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
1
作者 Fan Liu Xue-Feng Liu +4 位作者 Ruo-Ming Lan Xu-Ri Yao Shen-Cheng Dou Xiao-Qing Wang Guang-Jie Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期275-282,共8页
Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency d... Imaging quality is a critical component of compressive imaging in real applications. In this study, we propose a compressive imaging method based on multi-scale modulation and reconstruction in the spatial frequency domain. Theoretical analysis and simulation show the relation between the measurement matrix resolution and compressive sensing(CS)imaging quality. The matrix design is improved to provide multi-scale modulations, followed by individual reconstruction of images of different spatial frequencies. Compared with traditional single-scale CS imaging, the multi-scale method provides high quality imaging in both high and low frequencies, and effectively decreases the overall reconstruction error.Experimental results confirm the feasibility of this technique, especially at low sampling rate. The method may thus be helpful in promoting the implementation of compressive imaging in real applications. 展开更多
关键词 compressed sensing imaging quality spatial frequency domain multi-scale modulation
下载PDF
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
2
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
下载PDF
基于多尺度注意残差网络的地震波形分类研究
3
作者 王梦琪 黄汉明 +1 位作者 吴业正 王鹏飞 《地震工程学报》 CSCD 北大核心 2024年第3期724-733,共10页
选用2010年2月—2016年12月发生在北京顺义及河北三河等首都圈邻近区域的117个地震事件(包括54个天然地震事件和63个非天然地震事件——爆炸事件)作为研究对象,利用文章所提出的多尺度注意残差网络对其中的天然地震事件和爆炸事件波形... 选用2010年2月—2016年12月发生在北京顺义及河北三河等首都圈邻近区域的117个地震事件(包括54个天然地震事件和63个非天然地震事件——爆炸事件)作为研究对象,利用文章所提出的多尺度注意残差网络对其中的天然地震事件和爆炸事件波形进行二分类。首先,对原始地震波形进行简单预处理并截取成相同长度的地震时序数据,直接将其作为网络模型的输入;其次,选用含有残差模块的深度神经网络作为基础网络,利用深度神经网络对特征的自动提取能力,省略了传统波形分类需要提前提取时域波形的特征作为分类算法输入的步骤;然后,融合通道注意力机制(ECA)并对其进行改进,将空间维度的信息融入通道信息,优化了网络对关键信息的关注,更好地聚焦重要特征;最后,使用空间金字塔池化代替最大池化进行多尺度特征融合,得到更多的特征信息,构成多尺度注意残差网络。实验结果表明,最高分类准确率为97.11%,平均分类准确率为96.53%,证明了多尺度注意残差网络在地震波形分类任务中的有效性,为震源类型识别工作提供了一种新的方法。 展开更多
关键词 天然地震 人工爆炸 残差模块 注意力机制 空间金字塔池化
下载PDF
基于空间多尺度残差网络的红外与可见光图像融合
4
作者 张亦孟 林伟国 《大气与环境光学学报》 CAS CSCD 2023年第5期469-478,共10页
针对如何充分提取和融合红外与可见光图像典型特征的问题,提出一种基于空间多尺度残差网络的图像融合算法。首先,将源图像输入基于空间多尺度残差模块组成的编码器网络,通过源图像重建任务,训练编码器自动获取重要特征信息的能力;然后,... 针对如何充分提取和融合红外与可见光图像典型特征的问题,提出一种基于空间多尺度残差网络的图像融合算法。首先,将源图像输入基于空间多尺度残差模块组成的编码器网络,通过源图像重建任务,训练编码器自动获取重要特征信息的能力;然后,引入特征金字塔结构,设计了特征通道自注意力机制,编码器输出的基础层和细节层进行融合,减小尺度噪声,并由解码器重构出融合图像;最后,利用公开数据集进行定性和定量实验,证明了改进算法在突出红外图像目标和保留可见光图像纹理细节两方面的优势,相比于DDcGAN算法,新算法的标准差和平均梯度分别提升了12.91%和47.41%。 展开更多
关键词 图像融合 自动编码器 空间多尺度残差模块 通道自注意力
下载PDF
Examining residual spatial correlation in variation partitioning of beta diversity in a subtropical forest
5
作者 Ke Cao Xiangcheng Mi +5 位作者 Liwen Zhang Haibao Ren Mingjian Yu Jianhua Chen Jintun Zhang Keping Ma 《Journal of Plant Ecology》 SCIE CSCD 2019年第4期636-644,共9页
Aims The relative roles of ecological processes in structuring beta diver-sity are usually quantified by variation partitioning of beta diversity with respect to environmental and spatial variables or gamma di-versity... Aims The relative roles of ecological processes in structuring beta diver-sity are usually quantified by variation partitioning of beta diversity with respect to environmental and spatial variables or gamma di-versity.However,if important environmental or spatial factors are omitted,or a scale mismatch occurs in the analysis,unaccounted spatial correlation will appear in the residual errors and lead to re-sidual spatial correlation and problematic inferences.Methods Multi-scale ordination(MSO)partitions the canonical ordination results by distance into a set of empirical variograms which charac-terize the spatial structures of explanatory,conditional and residual variance against distance.Then these variance components can be used to diagnose residual spatial correlation by checking assump-tions related to geostatistics or regression analysis.In this paper,we first illustrate the performance of MSO using a simulated data set with known properties,thus making statistical issues explicit.We then test for significant residual spatial correlation in beta diversity analyses of the Gutianshan(GTS)24-ha subtropical forest plot in eastern China.Important Findings Even though we used up to 24 topographic and edaphic variables mapped at high resolution and spatial variables representing spa-tial structures at all scales,we still found significant residual spatial correlation at the 10 m×10 m quadrat scale.This invalidated the analysis and inferences at this scale.We also show that MSO pro-vides a complementary tool to test for significant residual spatial correlation in beta diversity analyses.Our results provided a strong argument supporting the need to test for significant residual spatial correlation before interpreting the results of beta diversity analyses. 展开更多
关键词 beta analysis residual spatial correlation spatial scale canonical ordination multi-scale ordination variation partitioning
原文传递
基于空谱分组卷积密集网络的高光谱图像分类 被引量:2
6
作者 欧阳宁 李祖锋 林乐平 《计算机工程与设计》 北大核心 2022年第7期2031-2039,共9页
针对高光谱图像分类在特征提取过程中高分辨率信息丢失,导致分类精度下降的问题,提出一种基于空谱分组卷积密集网络的高光谱图像分类方法。设计光谱-空间三维分组卷积密集模块,对光谱与空间特征进行分步提取,利用分组卷积构造的密集网... 针对高光谱图像分类在特征提取过程中高分辨率信息丢失,导致分类精度下降的问题,提出一种基于空谱分组卷积密集网络的高光谱图像分类方法。设计光谱-空间三维分组卷积密集模块,对光谱与空间特征进行分步提取,利用分组卷积构造的密集网络能减少数据固有信息冗余,使高分辨率的特征进行重用,避免细节特征信息丢失;设计光谱残差注意力模块,该模块通过结合空-谱特征计算注意力权重,对提取到的光谱特征进行权重重分配,对光谱信息富有的区域进行增强。实验结果表明,相比于若干最优的深度网络方法,所提高光谱图像分类方法具有更好的分类性能。 展开更多
关键词 高光谱图像分类 三维分组卷积 密集网络 光谱残差注意力模块 空-谱特征
下载PDF
基于注意力机制的街景图像语义分割方法
7
作者 瑚琦 王兵 卞亚林 《软件导刊》 2022年第9期141-145,共5页
街道场景图像的准确分割对于自动驾驶系统具有重要辅助作用,而针对该场景的现有语义分割方法仍存在分割精度不高、参数量大等问题。为有效改善语义分割性能,通过构建空间注意力模块和通道注意力模块,提出一种注意力语义分割网络。该网... 街道场景图像的准确分割对于自动驾驶系统具有重要辅助作用,而针对该场景的现有语义分割方法仍存在分割精度不高、参数量大等问题。为有效改善语义分割性能,通过构建空间注意力模块和通道注意力模块,提出一种注意力语义分割网络。该网络首先采用残差网络提取特征,然后并行使用两种注意力模块分别从空间和通道维度自适应细化特征图,以使网络在训练学习过程中更加关注信息丰富的空间区域和通道,进而增强网络表示能力。所提注意力模块具有结构简单和轻量级的特点,能与网络一起进行端到端训练。在Cityscapes和CamVid数据集上的实验结果表明,该注意力语义分割网络在较少的参数条件下,可获得较好的分割效果。 展开更多
关键词 街景图像 语义分割 残差网络 空间注意力模块 通道注意力模块
下载PDF
注意力残差网络的单图像去雨方法研究 被引量:7
8
作者 徐爱生 唐丽娟 陈冠楠 《小型微型计算机系统》 CSCD 北大核心 2020年第6期1281-1285,共5页
恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.... 恶劣的雨天天气会严重影响图像质量,进而导致目标检测,目标追踪等算法性能急剧下降,因此图像去雨得到了快速发展.本文提出一种基于注意力残差网络的端到端图像去雨算法,通过卷积神经网络强大的表示能力,学习出从有雨到无雨图像的映射.将注意力模块引入残差模块中,首先利用通道注意力机制自适应学习通道维度上不同特征,然后利用空间注意力机制建立雨条纹的内在关系,之后将注意力模块与残差模块相结合得到注意力残差单元,最后将其堆叠成高性能去雨网络.公开的合成和真实世界图像数据集上的实验表明,本文所提出的方法在视觉上可以大大提高去雨的性能. 展开更多
关键词 单图像去雨 深度残差网络 注意力机制 通道注意力模块 空间注意力模块
下载PDF
改进残差结构的轻量级故障诊断方法 被引量:3
9
作者 刘芯志 彭成 +1 位作者 满君丰 刘翊 《计算机工程与设计》 北大核心 2022年第8期2303-2310,共8页
针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结... 针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结构,加强特征表达能力,改进深度残差收缩模块,提高模型复杂噪声场景的鲁棒性。通过增加不同幅值的高斯白噪声模拟轴承信号复杂环境场景。实验结果表明,该模型4种评价指标均优于对比算法,具有良好的抗噪性能。 展开更多
关键词 蓝图可分离卷积 空间通道注意力 深度残差收缩模块 轻量级 高斯白噪声
下载PDF
基于空间元学习的放大任意倍的超分辨率重建方法 被引量:1
10
作者 孙忠凡 周正华 赵建伟 《计算机应用》 CSCD 北大核心 2020年第12期3471-3477,共7页
针对现有的基于深度学习的超分辨率重建方法主要研究放大整数倍的重建,对放大任意倍(如非整数倍)重建情况讨论较少的问题,提出一种基于空间元学习的放大任意倍的超分辨率重建方法。首先,利用坐标投影找出高分辨率图像与低分辨率图像坐... 针对现有的基于深度学习的超分辨率重建方法主要研究放大整数倍的重建,对放大任意倍(如非整数倍)重建情况讨论较少的问题,提出一种基于空间元学习的放大任意倍的超分辨率重建方法。首先,利用坐标投影找出高分辨率图像与低分辨率图像坐标间的对应关系;其次,在元学习网络的基础上,考虑特征图的空间信息,将提取到的空间特征与坐标位置相结合作为权值预测网络的输入;最后,将权值预测网络预测出的卷积核与特征图结合,从而有效地放大特征图的尺寸,得到放大任意倍的高分辨率图像。所提的空间元学习模块可以与其他深度网络相结合,得到放大任意倍的超分辨率图像重建方法。所提的放大任意倍(非整数倍)超分辨率重建方法解决了实际生活中放大尺寸固定且非整数倍的重建问题。实验结果表明,所提的重建方法在空间复杂度(网络参数)相当的情况下,时间复杂度(计算量)是其他重建方法的25%~50%,且峰值信噪比(PSNR)比其他一些方法提高了0.01~5 dB,结构相似度(SSIM)提高了0.03~0.11。 展开更多
关键词 超分辨率 深度学习 空间元学习 残差密集模块 权值预测
下载PDF
结合高效特征融合的可变尺寸图像隐写分析
11
作者 肖瑞雪 冯英伟 屈建萍 《计算机工程与应用》 CSCD 北大核心 2021年第24期126-134,共9页
为提升隐写分析的效率和准确率,并适应多尺寸输入图像,提出一个基于高效特征融合的可变尺寸图像隐写分析模型。在预处理层中,将经空域富模型的多阶高通滤波器初始化的多尺寸卷积核加入网络学习中,以提升模型的收敛效率和检测性能;在特... 为提升隐写分析的效率和准确率,并适应多尺寸输入图像,提出一个基于高效特征融合的可变尺寸图像隐写分析模型。在预处理层中,将经空域富模型的多阶高通滤波器初始化的多尺寸卷积核加入网络学习中,以提升模型的收敛效率和检测性能;在特征提取层中,采用特征融合思想,设计两个由Ghost瓶颈层、残差模块、密集连接模块组成的子网络,并融合输出的抽象隐写语义特征和非线性的高维隐写特征,以获得隐写特征的依赖性信息,增强模型的特征表达能力;采用改良版空间金字塔池化以自适应可变尺寸的图像样本,并丰富隐写特征的多样性。经仿真分析可知,模型能正确捕获关键的隐写信号,具备较高的收敛效率,在嵌入率为0.2、0.4的WOW隐写算法的检测准确率分别为82.6%和96.5%,在嵌入率为0.2、0.4的S-UNIWARD隐写算法的检测准确率分别为81.4%和95.2%,显著高于SRM和YedroudjNet隐写分析模型。 展开更多
关键词 隐写分析 特征融合 空间金字塔 GHOST 残差模块 密集连接模块
下载PDF
基于卷积网络注意力机制的人脸表情识别
12
作者 郭昕刚 程超 沈紫琪 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期2319-2328,共10页
针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,... 针对表情识别时出现参数量大和识别能力弱等问题,提出一种基于卷积网络人脸表情识别方法。引入改进型残差模块,在减少参数量的同时增强对表情区域的关注;利用通道-空间注意力机制对网络提取的表情区域实现不同维度和位置上的权重分配,专注于表情关键点中细微差别特征信息;利用细节模块进一步提取深度特征信息。为得到更高准确度,引入联合损失函数延长类外距离,缩短类内距离以提高表情识别准确度。本文将此网络运用到数据集FER2013、CK+中,实验结果表明:本算法平均识别率分别为63.91%、97.98%,参数量为11.34 M。与VGG网络、残差网络等对比,该模型不仅提高了识别率,还减少了冗余参数量。 展开更多
关键词 面部表情识别 残差模块 通道-空间注意力机制 细化模块
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部