Spatial omics technology integrates the concept of space into omics research and retains the spatial information of tissues or organs while obtaining molecular information.It is characterized by the ability to visuali...Spatial omics technology integrates the concept of space into omics research and retains the spatial information of tissues or organs while obtaining molecular information.It is characterized by the ability to visualize changes in molecular information and yields intuitive and vivid visual results.Spatial omics technologies include spatial transcriptomics,spatial proteomics,spatial metabolomics,and other technologies,the most widely used of which are spatial transcriptomics and spatial proteomics.The tumor microenvironment refers to the surrounding microenvironment in which tumor cells exist,including the surrounding blood vessels,immune cells,fibroblasts,bone marrow-derived inflammatory cells,various signaling molecules,and extracellular matrix.A key issue in modern tumor biology is the application of spatial omics to the study of the tumor microenvironment,which can reveal problems that conventional research techniques cannot,potentially leading to the development of novel therapeutic agents for cancer.This paper summarizes the progress of research on spatial transcriptomics and spatial proteomics technologies for characterizing the tumor immune microenvironment.展开更多
During the process of carcinogenesis and tumor progression,various molecular alternations occur in different omics levels.In recent years,multiomics approaches including genomics,epigenetics,transcriptomics,proteomics...During the process of carcinogenesis and tumor progression,various molecular alternations occur in different omics levels.In recent years,multiomics approaches including genomics,epigenetics,transcriptomics,proteomics,metabolomics,single-cell omics,and spatial omics have been applied in mapping diverse omics profiles of cancers.The development of high-throughput technologies such as sequencing and mass spectrometry has revealed different omics levels of tumor cells or tissues separately.While focusing on a single omics level results in a lack of accuracy,joining multiple omics approaches together undoubtedly benefits accurate molecular subtyping and precision medicine for cancer patients.With the deepening of tumor research in recent years,taking pathological classification as the only criterion of diagnosis and predicting prognosis and treatment response is found to be not accurate enough.Therefore,identifying precise molecular subtypes by exploring the molecular alternations during tumor occurrence and development is of vital importance.The review provides an overview of the advanced technologies and recent progress in multiomics applied in cancer molecular subtyping and detailedly explains the application of multiomics in identifying cancer driver genes and metastasis-related genes,exploring tumor microenvironment,and selecting liquid biopsy biomarkers and potential therapeutic targets.展开更多
Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context,significantly enhancing our understanding of the intricate and multifaceted biologic...Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context,significantly enhancing our understanding of the intricate and multifaceted biological system.With an increasing focus on spatial heterogeneity,there is a growing need for unbiased,spatially resolved omics technologies.Laser capture microdissection(LCM)is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest(ROIs)from heterogeneous tissues,with resolutions ranging from single cells to cell populations.Thus,LCM has been widely used for studying the cellular and molecular mechanisms of diseases.This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research.Key attributes of application cases are also highlighted,such as throughput and spatial resolution.In addition,we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research,disease diagnosis,and targeted therapy from the perspective of high-throughput,multi-omics,and single-cell resolution.展开更多
Tumor-associated tertiary lymphoid structures(TLSs)are ectopic lymphoid formations within tumor tissue,with mainly B and T cell populations forming the organic aggregates.The presence of TLSs in tumors has been strong...Tumor-associated tertiary lymphoid structures(TLSs)are ectopic lymphoid formations within tumor tissue,with mainly B and T cell populations forming the organic aggregates.The presence of TLSs in tumors has been strongly associated with patient responsiveness to immunotherapy regimens and improving tumor prognosis.Researchers have been motivated to actively explore TLSs due to their bright clinical application prospects.Various studies have attempted to decipher TLSs regarding their formation mechanism,structural composition,induction generation,predictive markers,and clinical utilization.Meanwhile,the scientific approaches to qualitative and quantitative descriptions are crucial for TLS studies.In terms of detection,hematoxylin and eosin(H&E),multiplex immunohistochemistry(mIHC),multiplex immunofluorescence(mIF),and 12-chemokine gene signature have been the top approved methods.However,no standard methods exist for the quantitative analysis of TLSs,such as absolute TLS count,analysis of TLS constituent cells,structural features,TLS spatial location,density,and maturity.This study reviews the latest research progress on TLS detection and quantification,proposes new directions for TLS assessment,and addresses issues for the quantitative application of TLSs in the clinic.展开更多
基金supported by Basic and Applied Basic Research Foundation of Guangdong Province(No.2022A1111220217)Medical Scientific Research Foundation of Guangdong Province(Nos.A2023216,A2022124)+3 种基金Science and Technology Program of Guangzhou(Nos.202201010840,202201010810,202102080132,202002030032,202002020023)Health Commission Program of Guangzhou(20212A010021,20201A010081,20211A011116)Science and Technology Project of Panyu,Guangzhou(2022-Z04-009,2022-Z04-090,2022-Z04-072,2021-Z04-013,2020-Z04-026,2019-Z04-02)Scientific Research Project of Guangzhou Panyu Central Hospital(Nos.2022Y002,2021Y004,2021Y002).
文摘Spatial omics technology integrates the concept of space into omics research and retains the spatial information of tissues or organs while obtaining molecular information.It is characterized by the ability to visualize changes in molecular information and yields intuitive and vivid visual results.Spatial omics technologies include spatial transcriptomics,spatial proteomics,spatial metabolomics,and other technologies,the most widely used of which are spatial transcriptomics and spatial proteomics.The tumor microenvironment refers to the surrounding microenvironment in which tumor cells exist,including the surrounding blood vessels,immune cells,fibroblasts,bone marrow-derived inflammatory cells,various signaling molecules,and extracellular matrix.A key issue in modern tumor biology is the application of spatial omics to the study of the tumor microenvironment,which can reveal problems that conventional research techniques cannot,potentially leading to the development of novel therapeutic agents for cancer.This paper summarizes the progress of research on spatial transcriptomics and spatial proteomics technologies for characterizing the tumor immune microenvironment.
基金National Natural Science Foundation of China(82173332).
文摘During the process of carcinogenesis and tumor progression,various molecular alternations occur in different omics levels.In recent years,multiomics approaches including genomics,epigenetics,transcriptomics,proteomics,metabolomics,single-cell omics,and spatial omics have been applied in mapping diverse omics profiles of cancers.The development of high-throughput technologies such as sequencing and mass spectrometry has revealed different omics levels of tumor cells or tissues separately.While focusing on a single omics level results in a lack of accuracy,joining multiple omics approaches together undoubtedly benefits accurate molecular subtyping and precision medicine for cancer patients.With the deepening of tumor research in recent years,taking pathological classification as the only criterion of diagnosis and predicting prognosis and treatment response is found to be not accurate enough.Therefore,identifying precise molecular subtypes by exploring the molecular alternations during tumor occurrence and development is of vital importance.The review provides an overview of the advanced technologies and recent progress in multiomics applied in cancer molecular subtyping and detailedly explains the application of multiomics in identifying cancer driver genes and metastasis-related genes,exploring tumor microenvironment,and selecting liquid biopsy biomarkers and potential therapeutic targets.
基金supported by the National Natural Science Foundation of China(81973701 and 82204772)the Natural Science Foundation of Zhejiang Province(LZ20H290002)+2 种基金the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)the China Postdoctoral Science Foundation(2022M712811)Westlake Laboratory(Westlake Laboratory of Life Sciences and Biomedicine).
文摘Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context,significantly enhancing our understanding of the intricate and multifaceted biological system.With an increasing focus on spatial heterogeneity,there is a growing need for unbiased,spatially resolved omics technologies.Laser capture microdissection(LCM)is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest(ROIs)from heterogeneous tissues,with resolutions ranging from single cells to cell populations.Thus,LCM has been widely used for studying the cellular and molecular mechanisms of diseases.This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research.Key attributes of application cases are also highlighted,such as throughput and spatial resolution.In addition,we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research,disease diagnosis,and targeted therapy from the perspective of high-throughput,multi-omics,and single-cell resolution.
基金supported by the Key Projects of Sichuan Natural Science Foundation(No.2022NSFSC0051)the Clinical Scientist Program of Sichuan Cancer Hospital(No.YB2022003)the Chengdu Technology Innovation R&D Project(No.2021YF0501659SN),China.
文摘Tumor-associated tertiary lymphoid structures(TLSs)are ectopic lymphoid formations within tumor tissue,with mainly B and T cell populations forming the organic aggregates.The presence of TLSs in tumors has been strongly associated with patient responsiveness to immunotherapy regimens and improving tumor prognosis.Researchers have been motivated to actively explore TLSs due to their bright clinical application prospects.Various studies have attempted to decipher TLSs regarding their formation mechanism,structural composition,induction generation,predictive markers,and clinical utilization.Meanwhile,the scientific approaches to qualitative and quantitative descriptions are crucial for TLS studies.In terms of detection,hematoxylin and eosin(H&E),multiplex immunohistochemistry(mIHC),multiplex immunofluorescence(mIF),and 12-chemokine gene signature have been the top approved methods.However,no standard methods exist for the quantitative analysis of TLSs,such as absolute TLS count,analysis of TLS constituent cells,structural features,TLS spatial location,density,and maturity.This study reviews the latest research progress on TLS detection and quantification,proposes new directions for TLS assessment,and addresses issues for the quantitative application of TLSs in the clinic.