期刊文献+
共找到131篇文章
< 1 2 7 >
每页显示 20 50 100
An improved deep dilated convolutional neural network for seismic facies interpretation
1
作者 Na-Xia Yang Guo-Fa Li +2 位作者 Ting-Hui Li Dong-Feng Zhao Wei-Wei Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1569-1583,共15页
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network... With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information. 展开更多
关键词 Seismic facies interpretation Dilated convolution spatial pyramid pooling Internal feature maps Compound loss function
下载PDF
Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network 被引量:1
2
作者 XU Jiangchang HE Shamin +2 位作者 YU Dedong WU Yiqun CHEN Xiaojun 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第3期298-305,共8页
Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the B... Sinus floor elevation with a lateral window approach requires bone graft(BG)to ensure sufficient bone mass,and it is necessary to measure and analyse the BG region for follow-up of postoperative patients.However,the BG region from cone-beam computed tomography(CBCT)images is connected to the margin of the maxillary sinus,and its boundary is blurred.Common segmentation methods are usually performed manually by experienced doctors,and are complicated by challenges such as low efficiency and low precision.In this study,an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution(ASPC)network.The ASPC module was adopted using residual connections to compose multiple atrous convolutions,which could extract more features on multiple scales.Subsequently,a segmentation network of the BG region with multiple ASPC modules was established,which effectively improved the segmentation performance.Although the training data were insufficient,our networks still achieved good auto-segmentation results,with a dice coefficient(Dice)of 87.13%,an Intersection over Union(Iou)of 78.01%,and a sensitivity of 95.02%.Compared with other methods,our method achieved a better segmentation effect,and effectively reduced the misjudgement of segmentation.Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’work efficiency,which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus. 展开更多
关键词 atrous spatial pyramid convolution(ASPC) bone graft(BG)region medical image segmentation residual connection
原文传递
基于YOLOv8的气象设备识别监控算法
3
作者 王祝先 叶润泽 +4 位作者 徐翌博 凌霄 白玉 宋邦钰 杨博寓 《应用科技》 CAS 2024年第4期83-90,共8页
在人烟稀少的地区,气象设备的监测与检查面临设备安置位置偏僻、缺乏实时巡检等问题。为解决这一难题,基于在图像识别领域表现卓越的YOLOv8算法,提出了一种新的气象设备识别监控模型,通过将原有的高效的空间金字塔池化(spatial pyramid ... 在人烟稀少的地区,气象设备的监测与检查面临设备安置位置偏僻、缺乏实时巡检等问题。为解决这一难题,基于在图像识别领域表现卓越的YOLOv8算法,提出了一种新的气象设备识别监控模型,通过将原有的高效的空间金字塔池化(spatial pyramid pooling-fast,SPPF)层替换为空间金字塔池化-全连接空间金字塔卷积(spatial pyramid pooling-fully connected spatial pyramid convolution,SPPFCSPC)层,成功降低了计算量,提升了气象设备检测的速度。为了进一步提升模型在复杂环境下的性能,提出了YOLOv8-SA模型,通过在主干网络(backbone)中加入多头自注意力机制,更精准地捕获图像中不同区域之间的关联性,有力地提高了模型的准确性。为了验证模型的有效性,创建了一个专门的气象设备数据集,并进行了对比实验。实验结果表明,本文提出的YOLOv8-SA模型在检测速度和准确性方面均取得了显著的提升,在自制的数据集中检测精度为98.6%,与传统的YOLOv8模型相比,检测精度提升了0.6%。该模型可有效解决人烟稀少地区气象设备的监测问题,为提升监测系统的实用性和效率提供新思路。 展开更多
关键词 气象设备 机器学习 深度学习 图像识别 YOLOv8 YOLOv8-SA 空间金字塔池化-全连接空间金字塔卷积 多头自注意力
下载PDF
健身行为的人体姿态估计及动作识别 被引量:1
4
作者 付惠琛 高军伟 车鲁阳 《液晶与显示》 CAS CSCD 北大核心 2024年第2期217-227,共11页
人体姿态估计和动作识别在安防、医疗和运动等领域有着重要的应用价值。为了解决不同背景及角度下各类运动动作的人体姿态估计和动作识别问题,本文提出了一种改进的YOLOv7-POSE算法,并自行拍摄制作各种拍摄角度的数据集进行训练。此算法... 人体姿态估计和动作识别在安防、医疗和运动等领域有着重要的应用价值。为了解决不同背景及角度下各类运动动作的人体姿态估计和动作识别问题,本文提出了一种改进的YOLOv7-POSE算法,并自行拍摄制作各种拍摄角度的数据集进行训练。此算法以YOLOv7为基础,对原始网络模型添加了分类的功能,在Backbone主干网络中引入CA卷积注意力机制,提升了网络在对人体骨骼关节点和动作的分类的重要特征的识别能力。用HorNet网络结构代替原模型的CBS卷积核,提高了模型的人体关键点检测精度和动作分类的准确度。将Head层的空间金字塔池化结构替换为空洞空间金字塔池化结构,提升了检测精度并且加快了模型收敛。将目标检测框的回归函数由CIOU替换为EIOU,提高了坐标回归的精度。设计了两组对照实验,实验结果证明,改进后的YOLOv7-POSE在验证集上的mAP为95.7%,相比于原始YOLOv7算法提高了4%,各类运动动作识别准确率显著上升,在实际推理中的关键点错检、漏检等情况明显减少,关键点位置估计误差明显降低。 展开更多
关键词 图像处理 关键点检测 姿态估计 注意力机制 空洞空间金字塔池化
下载PDF
基于稠密块改进LinkNet的高分遥感图像道路提取
5
作者 王增优 张鲜化 +2 位作者 刘荣 陈志高 朱旺煌 《航天返回与遥感》 CSCD 北大核心 2024年第3期107-117,共11页
针对LinkNet网络模型在进行道路图像分割任务时,特征信息易丢失以及缺乏对目标特征的关注度问题,提出了一种基于改进LinkNet残差网络的高分遥感图像道路提取方法。将原本LinkNet模型中编码区的残差块(Res Block)替换为稠密块(Dense Bloc... 针对LinkNet网络模型在进行道路图像分割任务时,特征信息易丢失以及缺乏对目标特征的关注度问题,提出了一种基于改进LinkNet残差网络的高分遥感图像道路提取方法。将原本LinkNet模型中编码区的残差块(Res Block)替换为稠密块(Dense Block),密集连接的方式减少特征信息在传递过程中的损失,并在每个稠密块之后构建卷积注意力单元来提高模型对目标特征的学习能力,最后用空洞空间金字塔池化模块将编码区与解码区进行连接,扩大感受野的同时还能接受多尺度目标特征信息。实验表明,该方法在DeepGlobe数据集上的准确率、平均交并比和F1-score分为82.16%、83.21%和81.65%,均优于同类网络,通过对提取的路网结果对比,该算法对于树木遮蔽处以及建筑物阴影下的路网提取在完整性和准确性上都具有明显提升。 展开更多
关键词 残差网络 道路提取 稠密块 卷积注意力 空洞空间金字塔池化
下载PDF
基于PCSA-YOLOv7 Former的输电线路连接金具及其锈蚀检测方法
6
作者 宋智伟 黄新波 +2 位作者 纪超 张凡 张烨 《中国电力》 CSCD 北大核心 2024年第6期141-152,共12页
输电线路分布情况复杂且故障难以有效检测,其中连接金具长期暴露于复杂环境下易受到恶劣环境的影响出现锈蚀等故障。针对输电线路连接金具部件具有尺度多样性和存在着锈蚀故障检测精度低的问题,提出了一种基于双重注意力嵌入重构和Swin ... 输电线路分布情况复杂且故障难以有效检测,其中连接金具长期暴露于复杂环境下易受到恶劣环境的影响出现锈蚀等故障。针对输电线路连接金具部件具有尺度多样性和存在着锈蚀故障检测精度低的问题,提出了一种基于双重注意力嵌入重构和Swin Transformer的输电线路连接金具组件及其锈蚀故障检测方法:PCSA-YOLOv7 Former。实验结果表明:该方法在构建的TLCF数据集上的综合检测性能领先于12类当前先进的目标检测算法,其中在测试集上的mAP_(0.5)达到94.9%,该方法相比于基线模型YOLOv7,其F1和mAP0.5指标分别提升了2.6个百分点和2.2个百分点,说明该方法能够更全面地理解输电线路连接金具图像中的多尺度语义信息并学习到不易区分的微小细节表征。 展开更多
关键词 输电线路连接金具 PCSA-YOLOv7 Former 双重注意力嵌入 Swin Transformer 空洞空间金字塔池化
下载PDF
基于CNN-Transformer结构的遥感影像变化检测
7
作者 潘梦洋 杨航 范祥晖 《液晶与显示》 CAS CSCD 北大核心 2024年第10期1361-1379,共19页
现代高分辨率遥感图像变化检测借助卷积神经网络(Convolutional Neural Network,CNN)取得了显著成果。然而,卷积操作的感受野限制导致在学习全局上下文和远程空间关系方面存在不足。虽然视觉Transformer能有效捕获远程特征的依赖性,但... 现代高分辨率遥感图像变化检测借助卷积神经网络(Convolutional Neural Network,CNN)取得了显著成果。然而,卷积操作的感受野限制导致在学习全局上下文和远程空间关系方面存在不足。虽然视觉Transformer能有效捕获远程特征的依赖性,但其对影像变化细节的处理不足,导致空间定位能力有限且计算效率低下。为解决上述问题,本文提出了一种基于空间空洞金字塔池化的跨层级联线性融合端到端编解码混合CNN-Transformer的变化检测模型,兼具视觉Transformer和CNN的优势。首先,利用孪生CNN网络提取图像特征,并借助空洞金字塔池化模块对特征进行精细处理,从而更精准地捕获图像的细节特征信息。其次,将提取的特征转化为视觉单词,并通过Transformer编码器进行建模,以获取丰富的上下文信息。这些信息随后被反馈至视觉空间,通过Transformer解码器对原始特征进行强化,提升特征的表达效果。接着,采用跨层级联的方式将CNN提取的特征与Transformer编解码的特征进行融合,利用上采样技术联系不同分辨率的特征图,实现位置信息与语义信息的融合。最后,通过差异增强模块生成包含丰富变化信息的差异特征图。在LEVIR、CDD、DSIFN和WHUCD 4个公开遥感数据集上的广泛实验验证了本文方法的有效性。与其他先进方法相比,本文模型的分类性能更出色,有效改善了变化检测中的欠分割、过分割及边缘粗糙等问题。 展开更多
关键词 遥感图像 变化检测 卷积神经网络 TRANSFORMER 空间空洞金字塔池化
下载PDF
基于深度学习的铁路异物侵限快速检测方法
8
作者 王辉 姜朱丰 +3 位作者 吴雨杰 范自柱 罗国亮 杨辉 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第5期2086-2098,共13页
针对列车运行环境内因意外突发事件所造成的异物侵限而影响列车安全运行的问题,在被广泛应用于工业领域的YOLOv3目标检测模型的基础之上,提出一种融合轨道限界和侵限异物识别的快速检测方法。首先,以ResNet-18网络作为铁路限界检测的主... 针对列车运行环境内因意外突发事件所造成的异物侵限而影响列车安全运行的问题,在被广泛应用于工业领域的YOLOv3目标检测模型的基础之上,提出一种融合轨道限界和侵限异物识别的快速检测方法。首先,以ResNet-18网络作为铁路限界检测的主干网络,利用辅助检测模块提升限界检测精度,达到特征提取速度快,语义信息丰富充足等目标。同时采用基于行锚框的分割算法检测轨道线坐标位置,结合标准轨距下的限界定义确定铁路异物入侵限界的范围,以减少侵限异物检测的区域。其次,设计基于Octave卷积的层内多尺度残差模块,将单通道卷积变为基于图像频率的双通道卷积,以降低卷积计算量,进一步提升异物侵限算法的检测速度。最后,引入空间金字塔模块和特征自适应融合模块,实现高、低级语义信息交换,从而增加网络对不同尺度目标的感知能力,并减少语义冲突问题。通过对比实验验证异物侵限检测算法的精度、速度和有效性。实验结果表明,所述方法能以172帧/s的速度对轨道位置和限界区域进行检测,精确度达98.12%。与其他算法相比,在大中小3种目标尺度上都超越了其他对比算法。所提出的融合轨道限界和侵限异物检测的方法,在保证精度的前提下,速度达到YOLOv3算法的2倍,能够满足列车对侵限异物的实时检测需求。 展开更多
关键词 异物侵限检测 Octave卷积 行锚框 铁路限界检测 空间金字塔 特征自适应融合
下载PDF
改进Unet++的肾脏肿瘤分割方法
9
作者 刘欣 柏正尧 方成 《计算机应用与软件》 北大核心 2024年第2期238-243,263,共7页
针对人工方式分割CT图像肾脏肿瘤区域耗时费力且存在主观因素影响等问题,提出一种基于卷积神经网络的肾脏肿瘤自动分割算法。算法以Unet++分割网络为基础框架,将预训练的ResNet-34网络中四个特征提取模块作为Unet++网络特征编码器,来提... 针对人工方式分割CT图像肾脏肿瘤区域耗时费力且存在主观因素影响等问题,提出一种基于卷积神经网络的肾脏肿瘤自动分割算法。算法以Unet++分割网络为基础框架,将预训练的ResNet-34网络中四个特征提取模块作为Unet++网络特征编码器,来提取图像特征信息;并将重新设计的空洞空间金字塔池化网络嵌入到Unet++每条解码路径中;不同的解码路径通过特征融合得到肾脏肿瘤分割结果。在KiTS19竞赛提供的数据集上进行验证,实验结果表明,该算法有效提高了CT图像肾脏肿瘤的分割精度。 展开更多
关键词 卷积神经网络 CT图像 Unet++网络 空洞空间金字塔池化 肾脏肿瘤
下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络
10
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
下载PDF
改进Mask R-CNN的无人机影像建筑物提取
11
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-CNN 路径融合 空洞空间金字塔池化模块
下载PDF
基于YOLO-MCG的PCB缺陷检测算法
12
作者 胡兰兰 邓超 《仪表技术与传感器》 CSCD 北大核心 2024年第4期100-106,共7页
为解决PCB缺陷检测中存在检测精度低,模型尺寸庞大的问题,文中提出基于YOLO-MCG的PCB缺陷检测算法。首先提出多尺度加权通道融合网络缩减模型体积,扩增小目标数据。接着提出混合空间金字塔卷积替换主干网络中SPP结构,扩大深层特征图感受... 为解决PCB缺陷检测中存在检测精度低,模型尺寸庞大的问题,文中提出基于YOLO-MCG的PCB缺陷检测算法。首先提出多尺度加权通道融合网络缩减模型体积,扩增小目标数据。接着提出混合空间金字塔卷积替换主干网络中SPP结构,扩大深层特征图感受野,增强模型语义信息特征提取性能。最后构建轻量化CG-CSP模块替换主干网络最深层CSP结构,减少网络参数,提高网络过滤冗余背景信息能力。实验结果表明,YOLO-MCG算法在8.13 MB的模型尺寸下平均精度均值为97.72%,与改进前模型比较,mAP提升3.77%,模型尺寸缩减69.89%,有效降低模型复杂度,提升缺陷检测效果。 展开更多
关键词 PCB缺陷检测 小目标 混合空间金字塔卷积 轻量化 注意力机制 感受野
下载PDF
面向微型交通标志的ASPC-YOLOv8检测算法
13
作者 陈其彬 邓涛 +4 位作者 杨志军 汪世豪 李彦波 韩振宇 陈梓山 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期55-60,共6页
针对在部分遮挡和复杂背景下的微型交通标志误检、漏检等问题,提出一种基于YOLOv8s的交通标志检测框架。构建空间自适应金字塔卷积模块(ASPC)代替Neck所有Conv模块,设计全新的ASPC2f模块代替部分C2f模块,减少了模型参数量,提升了检测性... 针对在部分遮挡和复杂背景下的微型交通标志误检、漏检等问题,提出一种基于YOLOv8s的交通标志检测框架。构建空间自适应金字塔卷积模块(ASPC)代替Neck所有Conv模块,设计全新的ASPC2f模块代替部分C2f模块,减少了模型参数量,提升了检测性能;为解决在检测小目标时因尺度不一致而导致的语义信息损失问题,引入小目标检测层,以增强深层和浅层语义信息的有效融合;使用EIOU代替原来的边界框损失函数,提升网络边界框回归性能。经实验,该方法在TT100K交通标志数据集上平均精度均值(mAP)达到89.7%,相较于原模型提升6.2个百分点,微型目标平均精度均值相对提升9.4个百分点,参数量降低2.6 MB。 展开更多
关键词 交通标志检测 小目标检测 空间金字塔卷积 特征融合
下载PDF
基于注意力机制和多空间金字塔池化的实时目标检测算法
14
作者 王国刚 李泽欣 董志豪 《计算机测量与控制》 2024年第2期56-64,共9页
YOLOv4计算复杂度高,空间金字塔池化模块仅一次增强特征融合网络的深层区域特征图的表征能力、检测头网络的特征图难以突出重要通道特征;针对以上问题,提出一种基于注意力机制和多空间金字塔池化的实时目标检测算法;该算法采用多空间金... YOLOv4计算复杂度高,空间金字塔池化模块仅一次增强特征融合网络的深层区域特征图的表征能力、检测头网络的特征图难以突出重要通道特征;针对以上问题,提出一种基于注意力机制和多空间金字塔池化的实时目标检测算法;该算法采用多空间金字塔池化,提取局部特征和全局特征,融合多重感受野,加强特征融合网络的浅、中、深层特征图的表征能力;引入压缩激励通道注意力机制,建模通道间的相关性,自适应调整特征图各个通道的权重,从而使网络更加关注重要特征;特征融合和检测头网络中使用深度可分离卷积,减少了网络参数量;实验结果表明,所提算法的均值平均精度均高于其他7种主流对比算法;与YOLOv4相比,参数量、模型大小分别减少了27.85 M和106.25 MB,所提算法在降低复杂度的同时,提高了检测准确度,且该算法的检测速率达到33.70帧/秒,满足实时性要求。 展开更多
关键词 YOLOv4 通道注意力 空间金字塔池化 感受野 深度可分离卷积 实时性
下载PDF
基于卷积神经网络的微地震事件识别方法研究
15
作者 李思远 訾乾龙 《计算机与数字工程》 2024年第7期1993-1997,共5页
近些年来,科学技术的发展为社会带来了可观的收益。利用深度学习进行微地震事件识别也成为了一个研究热点。非常规油气勘探开发成为当前油气资源的主要途径,非常规勘探开发又需要微地震事件识别,针对微地震事件识别,主要解决的是快速、... 近些年来,科学技术的发展为社会带来了可观的收益。利用深度学习进行微地震事件识别也成为了一个研究热点。非常规油气勘探开发成为当前油气资源的主要途径,非常规勘探开发又需要微地震事件识别,针对微地震事件识别,主要解决的是快速、准确地检测微地震事件,这对石油勘探工作有着重大意义。为解决提取特征引入不确定性等缺点,论文利用雷克子波正演生成微地震信号数据再添加高斯嗓声进行模型研究。通过对构建数据集、搭建网络模型、评价模型输出结果等步骤,实现识别方法。经过反复试验与仿真实验,用卷积神经网络的方法可以对微地震有效信号快速准确地检测以及去掉冗余信息,提高微地震有效数据传输。 展开更多
关键词 卷积神经网络 空间金字塔池化 微地震正演模拟
下载PDF
基于注意力机制的多任务目标计数系统设计
16
作者 李永慧 《电视技术》 2024年第7期47-52,共6页
提出基于注意力机制的深层神经网络用于目标计数,其任务是为输入图像的目标进行精确数目统计。该网络模型同时引进多任务学习方法,多尺度融合得到密度特征图和注意力特征图进行目标计数。首先,使用交叉特征金字塔网络进行特征提取;其次... 提出基于注意力机制的深层神经网络用于目标计数,其任务是为输入图像的目标进行精确数目统计。该网络模型同时引进多任务学习方法,多尺度融合得到密度特征图和注意力特征图进行目标计数。首先,使用交叉特征金字塔网络进行特征提取;其次,将提取的特征分别用于密度特征图及注意力特征图进行交叉融合;最后,通过多任务学习将两个输出特征图逐元素运算,得到精确的密度特征图。提出的网络模型在行人检测数据集(ShanghaiTech)与多类别的行为识别数据集(UCF_CC_50)上进行了训练与测试,实验结果表明,通过在各个分支引入注意力机制,可以有效提高整个模型预测结果的准确率。 展开更多
关键词 目标计数 注意力机制 多任务学习 交叉特征金字塔网络
下载PDF
航拍绝缘子自爆缺陷的轻量化检测方法 被引量:8
17
作者 贾晓芬 于业齐 +2 位作者 郭永存 黄友锐 赵佰亭 《高电压技术》 EI CAS CSCD 北大核心 2023年第1期294-300,共7页
为了精准识别、定位架空输电线路中航拍绝缘子串的自爆缺陷,提出一种轻量化检测方法MDD-YOLOv3。首先将YOLOv3主干网络残差单元中的普通卷积替换为深度可分离卷积,设计主干网络D-Darknet53,在网络检测精度微降的情况下,大幅提升网络的... 为了精准识别、定位架空输电线路中航拍绝缘子串的自爆缺陷,提出一种轻量化检测方法MDD-YOLOv3。首先将YOLOv3主干网络残差单元中的普通卷积替换为深度可分离卷积,设计主干网络D-Darknet53,在网络检测精度微降的情况下,大幅提升网络的检测速度。特征挖掘模块中,设计了Dense-SPP模块,Dense-SPP和它前后串联的卷积特征提取层能充分挖掘自爆缺陷的全局和局部特征,提高网络对自爆缺陷的特征表达能力。最后构建了四维度预测层,能充分提取自爆缺陷的位置、纹理和语义等信息,提高网络的小目标检测性能。仿真实验表明,MDD-YOLOv3对绝缘子的检测精确度达到96.1%,检测速度达到36帧/s,相比YOLOv3,检测精确度和速度分别提升了4.0%和28.6%。研究结果证明所提方法可以在复杂背景下快速且精准的识别和定位绝缘子缺陷。 展开更多
关键词 自爆缺陷 绝缘子 四维度预测 深度可分离卷积 空间金字塔池化
下载PDF
基于改进的DeepLabv3+图像语义分割算法研究 被引量:1
18
作者 赵为平 陈雨 +2 位作者 项松 刘远强 王超越 《系统仿真学报》 CAS CSCD 北大核心 2023年第11期2333-2344,共12页
目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络... 目前主流图像语义分割网络往往存在误分割、分割不连续和模型复杂度高的问题,不能灵活高效地部署于实际场景中。针对这一现象,通过综合考虑网络的参数量、预测时间和准确度,设计出一种优化DeepLabv3+模型的图像语义分割网络。骨干网络改用轻量级EfficientNetv2网络提取特征,提高参数利用率;在空洞空间金字塔池化模块中使用混合条带池化模块代替全局平均池化,引入深度可分离膨胀卷积,减少参数量和提高学习多尺度信息的能力;使用注意力机制增强模型表征力,提取骨干网络多条浅层特征,丰富图像的几何细节信息。实验表明,本文算法可达到mIoU为81.19%,参数量为55.51×106,有效优化了分割精度和模型复杂度,同时也提高了模型泛化性。 展开更多
关键词 DeepLabv3+ 图像语义分割 空洞空间金字塔池化 注意力机制 深度可分离膨胀卷积
下载PDF
联合Gabor滤波器和核池化特征学习的单样本人脸识别与验证 被引量:6
19
作者 周稻祥 冯姝 《太原理工大学学报》 CAS 北大核心 2023年第2期384-391,共8页
针对深度网络模型的结构复杂问题,受构建Gabor滤波器无需任何学习过程且与训练数据无关,以及径向基(radial basis function, RBF)核池化能够提取非线性二阶特征的启发,提出一种联合Gabor滤波器和RBF核池化的轻量卷积网络方法。首先对人... 针对深度网络模型的结构复杂问题,受构建Gabor滤波器无需任何学习过程且与训练数据无关,以及径向基(radial basis function, RBF)核池化能够提取非线性二阶特征的启发,提出一种联合Gabor滤波器和RBF核池化的轻量卷积网络方法。首先对人脸图像进行Gabor卷积得到特征图;然后采用双曲正切函数tanh激励特征图以提高特征的表达能力;最后利用多尺度金字塔策略将特征图划分为多个区域,在每个区域上做RBF核池化,所有区域的核池化特征串联得到人脸特征表示。探讨了多个参数对识别性能的影响,对比了协方差池化和核池化的区别和性能。在三个单样本人脸识别和一个视频人脸验证数据集上进行大量实验,结果表明本文方法学习的人脸特征具有优秀的判别能力,对光照、遮挡、年龄等因素具有强鲁棒性。 展开更多
关键词 人脸识别 轻量卷积网络 GABOR滤波器 核池化 空间金字塔
下载PDF
基于增强特征融合网络的安全帽佩戴检测 被引量:1
20
作者 崔卓栋 陈玮 尹钟 《电子科技》 2023年第4期44-51,共8页
佩戴安全帽是保证工人施工安全的重要方式之一。现有的安全帽检测器的检测精度与速度都有待提高,这使得这些检测器难以大规模应用于实际的生产活动中。针对这些问题,文中推出了基于EfficientDet的安全帽检测器,并在此基础上从特征融合... 佩戴安全帽是保证工人施工安全的重要方式之一。现有的安全帽检测器的检测精度与速度都有待提高,这使得这些检测器难以大规模应用于实际的生产活动中。针对这些问题,文中推出了基于EfficientDet的安全帽检测器,并在此基础上从特征融合的角度对其进行了改进。该模型通过使用特征补充的方式减少了特征融合过程中的信息损失,并利用改进的特征金字塔及自适应空间融合模块提升了融合的效率,最终达到提升性能的目的。实验表明,文中改进的模型在安全帽佩戴数据集上的精确率达到83.03%,相较于未改进的模型有所提升,且模型大小没有明显增加。该模型在PASCAL VOC 2007上的精确率则达到了82.76%。 展开更多
关键词 安全帽佩戴检测 特征融合 特征金字塔 目标检测 EfficientDet 空间融合 深度学习 卷积神经网络
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部