期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
Effects of Different Spatial Resolutions on Prediction Accuracy of Thunnus alalunga Fishing Ground in Waters Near the Cook Islands Based on Long Short-Term Memory(LSTM)Neural Network Model 被引量:1
1
作者 XU Hui SONG Liming +4 位作者 ZHANG Tianjiao LI Yuwei SHEN Jieran ZHANG Min LI Kangdi 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1427-1438,共12页
Albacore tuna(Thunnus alalunga)is one of the target species of tuna longline fishing,and waters near the Cook Islands are a vital albacore tuna fishing ground.Marine environmental data are usually presented with diffe... Albacore tuna(Thunnus alalunga)is one of the target species of tuna longline fishing,and waters near the Cook Islands are a vital albacore tuna fishing ground.Marine environmental data are usually presented with different spatial resolutions,which leads to different results in tuna fishery prediction.Study on the impact of different spatial resolutions on the prediction accuracy of albacore tuna fishery to select the best spatial resolution can contribute to better management of albacore tuna resources.The nominal catch per unit effort(CPUE)of albacore tuna is calculated according to vessel monitor system(VMS)data collected from Chinese distantwater fishery enterprises from January 1,2017 to May 31,2021.A total of 26 spatiotemporal and environmental factors,including temperature,salinity,dissolved oxygen of 0–300 m water layer,chlorophyll-a concentration in the sea surface,sea surface height,month,longitude,and latitude,were selected as variables.The temporal resolution of the variables was daily and the spatial resolutions were set to be 0.5°×0.5°,1°×1°,2°×2°,and 5°×5°.The relationship between the nominal CPUE and each individual factor was analyzed to remove the factors irrelavant to the nominal CPUE,together with a multicollinearity diagnosis on the factors to remove factors highly related to the other factors within the four spatial resolutions.The relationship models between CPUE and spatiotemporal and environmental factors by four spatial resolutions were established based on the long short-term memory(LSTM)neural network model.The mean absolute error(MAE)and root mean square error(RMSE)were used to analyze the fitness and accuracy of the models,and to determine the effects of different spatial resolutions on the prediction accuracy of the albacore tuna fishing ground.The results show the resolution of 1°×1°can lead to the best prediction accuracy,with the MAE and RMSE being 0.0268 and 0.0452 respectively,followed by 0.5°×0.5°,2°×2°and 5°×5°with declining prediction accuracy.The results suggested that 1)albacore tuna fishing ground can be predicted by LSTM;2)the VMS records the data in detail and can be used scientifically to calculate the CPUE;3)correlation analysis,and multicollinearity diagnosis are necessary to improve the prediction accuracy of the model;4)the spatial resolution should be 1°×1°in the forecast of albacore tuna fishing ground in waters near the Cook Islands. 展开更多
关键词 albacore tuna fishing ground prediction accuracy VMS spatial resolution LSTM the Cook Islands
下载PDF
A Cloud Framework for High Spatial Resolution Soil Moisture Mapping from Radar and Optical Satellite Imageries
2
作者 GUO Tianhao ZHENG Jia +8 位作者 WANG Chunmei TAO Zui ZHENG Xingming WANG Qi LI Lei FENG Zhuangzhuang WANG Xigang LI Xinbiao KE Liwei 《Chinese Geographical Science》 SCIE CSCD 2023年第4期649-663,共15页
Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing da... Soil moisture plays an important role in crop yield estimation,irrigation management,etc.Remote sensing technology has potential for large-scale and high spatial soil moisture mapping.However,offline remote sensing data processing is time-consuming and resource-intensive,and significantly hampers the efficiency and timeliness of soil moisture mapping.Due to the high-speed computing capabilities of remote sensing cloud platforms,a High Spatial Resolution Soil Moisture Estimation Framework(HSRSMEF)based on the Google Earth Engine(GEE)platform was developed in this study.The functions of the HSRSMEF include research area and input datasets customization,radar speckle noise filtering,optical-radar image spatio-temporal matching,soil moisture retrieving,soil moisture visualization and exporting.This paper tested the performance of HSRSMEF by combining Sentinel-1,Sentinel-2 images and insitu soil moisture data in the central farmland area of Jilin Province,China.Reconstructed Normalized Difference Vegetation Index(NDVI)based on the Savitzky-Golay algorithm conforms to the crop growth cycle,and its correlation with the original NDVI is about 0.99(P<0.001).The soil moisture accuracy of the random forest model(R 2=0.942,RMSE=0.013 m3/m3)is better than that of the water cloud model(R 2=0.334,RMSE=0.091 m3/m3).HSRSMEF transfers time-consuming offline operations to cloud computing platforms,achieving rapid and simplified high spatial resolution soil moisture mapping. 展开更多
关键词 soil moisture(SM) Google Earth Engine(GEE) Cloud Computing Platform High spatial resolution Soil Moisture Estimation Framework(HSRSMEF) remote sensing Sentienl-1 Sentinel-2 Northeast China
下载PDF
Improved spatial resolution in soil moisture retrieval at arid mining area using apparent thermal inertia 被引量:4
3
作者 雷少刚 卞正富 +1 位作者 John L.DANIELS 刘东烈 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1866-1873,共8页
A surface soil moisture model with improved spatial resolution was developed using remotely sensed apparent thermal inertia(ATI).The model integrates the surface temperature derived from TM/ETM+ image and the mean ... A surface soil moisture model with improved spatial resolution was developed using remotely sensed apparent thermal inertia(ATI).The model integrates the surface temperature derived from TM/ETM+ image and the mean surface temperature from MODIS images to improve the spatial resolution of soil temperature difference based on the heat conduction equation,which is necessary to calculate the ATI.Consequently,the spatial resolution of ATI and SMC can be enhanced from 1 km to 120 m(TM) or 60m(ETM+).Moreover,the enhanced ATI has a much stronger correlation coefficient(R^2) with SMC(0.789) than the surface reflectance(0.108) or the ATI derived only from MODIS images(0.264).Based on the regression statistics of the field SMC measurement and enhanced ATI,a linear regression model with an RMS error of 1.90%was found. 展开更多
关键词 soil water content soil temperature difference thermal inertia remote sensing spatial resolution
下载PDF
Improving Simulations of Vegetation Dynamics over the Tibetan Plateau:Role of Atmospheric Forcing Data and Spatial Resolution 被引量:4
4
作者 Zhijie KANG Bo QIU +3 位作者 Zheng XIANG Ye LIU Zhiqiang LIN Weidong GUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第7期1115-1132,I0018-I0022,共23页
The efficacy of vegetation dynamics simulations in offline land surface models(LSMs)largely depends on the quality and spatial resolution of meteorological forcing data.In this study,the Princeton Global Meteorologica... The efficacy of vegetation dynamics simulations in offline land surface models(LSMs)largely depends on the quality and spatial resolution of meteorological forcing data.In this study,the Princeton Global Meteorological Forcing Data(PMFD)and the high spatial resolution and upscaled China Meteorological Forcing Data(CMFD)were used to drive the Simplified Simple Biosphere model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics(SSiB4/TRIFFID)and investigate how meteorological forcing datasets with different spatial resolutions affect simulations over the Tibetan Plateau(TP),a region with complex topography and sparse observations.By comparing the monthly Leaf Area Index(LAI)and Gross Primary Production(GPP)against observations,we found that SSiB4/TRIFFID driven by upscaled CMFD improved the performance in simulating the spatial distributions of LAI and GPP over the TP,reducing RMSEs by 24.3%and 20.5%,respectively.The multi-year averaged GPP decreased from 364.68 gC m^(-2)yr^(-1)to 241.21 gC m^(-2)yr^(-1)with the percentage bias dropping from 50.2%to-1.7%.When using the high spatial resolution CMFD,the RMSEs of the spatial distributions of LAI and GPP simulations were further reduced by 7.5%and 9.5%,respectively.This study highlights the importance of more realistic and high-resolution forcing data in simulating vegetation growth and carbon exchange between the atmosphere and biosphere over the TP. 展开更多
关键词 SSiB4 meteorological forcing data vegetation dynamics spatial resolution Tibetan Plateau
下载PDF
Areal density and spatial resolution of high energy electron radiography 被引量:4
5
作者 Jiahao Xiao Zimin Zhang +13 位作者 Shuchun Cao Ping Yuan Xiaokang Shen Rui Cheng Quantang Zhao Yang Zong Ming Liu Xianming Zhou Zhongping Li Yongtao Zhao Chuanxiang Tang Wenhui Huang Yingchao Du Wei Gai 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期321-326,共6页
Ultrafast imaging tools are of great importance for determining the dynamic density distribution in high energy density(HED)matter.In this work,we designed a high energy electron radiography(HEER)system based on a lin... Ultrafast imaging tools are of great importance for determining the dynamic density distribution in high energy density(HED)matter.In this work,we designed a high energy electron radiography(HEER)system based on a linear electron accelerator to evaluate its capability for imaging HED matter.40 MeV electron beams were used to image an aluminum target to study the density resolution and spatial resolution of HEER.The results demonstrate a spatial resolution of tens of micrometers.The interaction of the beams with the target and the beam transport of the transmitted electrons are further simulated with EGS5 and PARMELA codes,with the results showing good agreement with the experimental resolution.Furthermore,the experiment can be improved by adding an aperture at the Fourier plane. 展开更多
关键词 high energy density matter high energy electron radiography areal density resolution spatial resolution
下载PDF
Integrating cross-sensor high spatial resolution satellite images to detect subtle forest vegetation change in the Purple Mountains,a national scenic spot in Nanjing,China 被引量:1
6
作者 Fangyan Zhu Wenjuan Shen +2 位作者 Jiaojiao Diao Mingshi Li Guang Zheng 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第5期1743-1758,共16页
Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution r... Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution remote sensing images can be used to detect subtle vegetation changes.The major objective of this study was to map and quantify forest vegetation changes in a national scenic location,the Purple Mountains of Nanjing,China,using multi-temporal cross-sensor high spatial resolution satellite images to identify the main drivers of the vegetation changes and provide a reference for sustainable management.We used Quickbird images acquired in 2004,IKONOS images acquired in 2009,and WorldView2 images acquired in 2015.Four pixel-based direct change detection methods including the normalized difference vegetation index difference method,multi-index integrated change analysis(MIICA),principal component analysis,and spectral gradient difference analysis were compared in terms of their change detection performances.Subsequently,the best pixel-based detection method in conjunction with object-oriented image analysis was used to extract subtle forest vegetation changes.An accuracy assessment using the stratified random sampling points was conducted to evaluate the performance of the change detection results.The results showed that the MIICA method was the best pixel-based change detection method.And the object-oriented MIICA with an overall accuracy of 0.907 and a kappa coefficient of 0.846 was superior to the pixel-based MIICA.From 2004 to 2009,areas of vegetation gain mainly occurred around the periphery of the study area,while areas of vegetation loss were observed in the interior and along the boundary of the study area due to construction activities,which contributed to 79%of the total area of vegetation loss.During 2009–2015,the greening initiatives around the construction areas increased the forest vegetation coverage,accounting for 84%of the total area of vegetation gain.In spite of this,vegetation loss occurred in the interior of the Purple Mountains due to infrastructure development that caused conversion from vegetation to impervious areas.We recommend that:(1)a local multi-agency team inspect and assess law enforcement regarding natural resource utilization;and(2)strengthen environmental awareness education. 展开更多
关键词 High spatial resolution satellite images Vegetation change Direct detection method Objectoriented Purple Mountains
下载PDF
Spatial resolution and image processing for pinhole camera-based X-ray fluorescence imaging: a simulation study 被引量:1
7
作者 Ze He Ning Huang +2 位作者 Peng Wang Zi-Han Chen Bo Peng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第5期135-153,共19页
Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reco... Spatial resolution and image-processing methods for full-field X-ray fluorescence(FF-XRF)imaging using X-ray pinhole cameras were studied using Geant4simulations with different geometries and algorithms for image reconstruction.The main objectives were:(1)calculating the quantum efficiency curves of specific cameras,(2)studying the relationships between the spatial resolution and the pinhole diameter,magnification,and camera binning value,and(3)comparing image-processing methods for pinhole camera systems.Several results were obtained using a point and plane source as the X-ray fluorescence emitter and an array of 100×100 silicon pixel detectors as the X-ray camera.The quantum efficiency of a back-illuminated deep depletion(BI-DD)structure was above 30%for the XRF energies in the 0.8–9 keV range,with the maximum of 93.7%at 4 keV.The best spatial resolution of the pinhole camera was 24.7μm and 31.3 lp/mm when measured using the profile function of the point source,with the diameter of 20μm,magnification of 3.16,and camera bin of 1.A blind deconvolution algorithm with Gaussian filtering performed better than the Wiener filter and Richardson iterative methods on FF-XRF images,with the signal-to-noise ratio of 7.81 dB and improved signalto-noise ratio of 7.24 dB at the diameter of 120μm,magnification of 1.0,and camera bin of 1. 展开更多
关键词 Full-field X-ray fluorescence(FF-XRF) X-ray pinhole camera spatial resolution Image processing
下载PDF
High Spatial Resolution Mapping of Dykes Using Unmanned Aerial Vehicle(UAV) Photogrammetry: New Insights On Emplacement Processes 被引量:1
8
作者 Alexander CRUDEN Stefan VOLLGGER +1 位作者 Greg DERING Steven MICKLETHWAITE 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期52-53,共2页
Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
关键词 PHOTOGRAMMETRY High spatial resolution Mapping of Dykes Using Unmanned Aerial Vehicle New Insights On Emplacement Processes UAV
下载PDF
A spatial resolution effect analysis of remote sensing bathymetry 被引量:3
9
作者 LIANG Jian ZHANG Jie MA Yi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期102-109,共8页
A spatial resolution effect of remote sensing bathymetry is an important scientific problem. The in situ measured water depth data and images of Dongdao Island are used to study the effect of water depth inversion fro... A spatial resolution effect of remote sensing bathymetry is an important scientific problem. The in situ measured water depth data and images of Dongdao Island are used to study the effect of water depth inversion from different spatial resolution remote sensing images. The research experiments are divided into five groups including Quick Bird and World View-2 remote sensing images with their original spatial resolution(2.4/2.0 m)and four kinds of reducing spatial resolution(4, 8, 16 and 32 m), and the water depth control and checking points are set up to carry out remote sensing water depth inversion. The experiment results indicate that the accuracy of the water depth remote sensing inversion increases first as the spatial resolution decreases from 2.4/2.0 to 4, 8 and16 m. And then the accuracy decreases along with the decreasing spatial resolution. When the spatial resolution of the image is 16 m, the inversion error is minimum. In this case, when the spatial resolution of the remote sensing image is 16 m, the mean relative errors(MRE) of Quick Bird and World View-2 bathymetry are 21.2% and 13.1%,compared with the maximum error are decreased by 14.7% and 2.9% respectively; the mean absolute errors(MAE) are 2.0 and 1.4 m, compared with the maximum are decreased by 1.0 and 0.5 m respectively. The results provide an important reference for the selection of remote sensing data in the study and application of the remote sensing bathymetry. 展开更多
关键词 remote sensing spatial resolution water depth remote sensing inversion
下载PDF
Monitoring of Karst Rocky Desertification Control Projects Based on Remote Sensing Images with Medium and High Spatial Resolution——A Case Study of Disi River Basin in Puan County 被引量:1
10
作者 Haixiang Guo Yulun An 《Meteorological and Environmental Research》 CAS 2013年第7期32-34,38,共4页
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat... [ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects. 展开更多
关键词 Karst Rocky Desertification (KRD) Remote sensing images with medium and high spatial resolution MONITORING Puan County China
下载PDF
A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
11
作者 Jianjin Zhou Jianrong Zhou +9 位作者 Xiaojuan Zhou Lin Zhu Jianqing Yang Guian Yang Yi Zhang Baowei Ding Bitao Hu Zhijia Sun Limin Duan Yuanbo Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第5期225-230,共6页
In recent years,gas electron multiplier(GEM)neutron detectors have been developing towards high spatial resolution and high dynamic counting range.We propose a novel concept of an Al stopping layer to enable the detec... In recent years,gas electron multiplier(GEM)neutron detectors have been developing towards high spatial resolution and high dynamic counting range.We propose a novel concept of an Al stopping layer to enable the detector to achieve sub-millimeter(sub-mm)spatial resolution.The neutron conversion layer is coated with the Al stopping layer to limit the emission angle of ions into the drift region.The short track projection of ions is obtained on the signal readout board,and the detector would get good spatial resolution.The spatial resolutions of the GEM neutron detector with the Al stopping layer are simulated and optimized based on Geant4 Garfield Interface.The spatial resolution of the detector is 0.76 mm and the thermal neutron detection efficiency is about 0.01%when the Al stopping layer is 3.0μm thick,the drift region is 2 mm thick,the strip pitch is 600μm,and the digital readout is employed.Thus,the GEM neutron detector with a simple detector structure and a fast readout mode is developed to obtain a high spatial resolution and high dynamic counting range.It could be used for the direct measurement of a high-flux neutron beam,such as Bragg transmission imaging,very small-angle scattering neutron detection and neutron beam diagnostic. 展开更多
关键词 high spatial resolution Al stopping layer GEM neutron detector spallation neutron source
下载PDF
A Method to Estimate Spatial Resolution in 2-D Seismic Surface Wave Tomographic Problems
12
作者 Jorge L.de Souza 《International Journal of Geosciences》 2014年第8期757-770,共14页
A novel methodology to quantify the spatial resolution in 2-D seismic surface wave tomographic problems is proposed in this study. It is based on both the resolving kernels computed via full resolution matrix and the ... A novel methodology to quantify the spatial resolution in 2-D seismic surface wave tomographic problems is proposed in this study. It is based on both the resolving kernels computed via full resolution matrix and the concept of Full Width at Half Maximum (FWHM) of a Gaussian function. This method allows estimating quantitatively the spatial resolution at any cell of a gridded area. It was applied in the northeastern Brazil and the estimated spatial resolution range is in agreement with all previous surface wave investigations in the South America continent. 展开更多
关键词 Surface Waves Seismic Tomography Wave Propagation spatial resolution Northeastern Brazil
下载PDF
DSFA: cross-scene domain style and feature adaptation for landslide detection from high spatial resolution images
13
作者 Penglei Li Yi Wang +3 位作者 Tongzhen Si Kashif Ullah Wei Han Lizhe Wang 《International Journal of Digital Earth》 SCIE EI 2023年第1期2426-2447,共22页
Rapid and accurate landslide inventory mapping is significant for emergency rescue and post-disaster reconstruction.Nowadays,deep learning methods exhibit excellent performance in supervised landslide detection.Howeve... Rapid and accurate landslide inventory mapping is significant for emergency rescue and post-disaster reconstruction.Nowadays,deep learning methods exhibit excellent performance in supervised landslide detection.However,due to differences between cross-scene images,the performance of existing methods is significantly degraded when directly applied to another scene,which limits the application of rapid landslide inventory mapping.In this study,we propose a novel Domain Style and Feature Adaptation(DSFA)method for cross-scene landslide detection from high spatial resolution images,which can leverage labeled source domain images and unlabeled target domain images to mine robust landslide representations for different scenes.Specifically,we mitigate the large discrepancy between domains at the dataset level and feature level.At the dataset level,we introduce a domain style adaptation strategy to shift landslide styles,which not only bridges the domain gap,but also increases the diversity of landslide samples.At the feature level,adversarial learning and domain distance minimization are integrated to narrow large feature distribution discrepancies for learning domain-invariant information.In addition,to avoid information omission,we improve the U-Net3+model.Extensive experimental results demonstrate that DSFA has superior detection capability and outperforms other methods,showing its great application potential in unsupervised landslide domain detection. 展开更多
关键词 Landslide detection deep learning remote sensing domain adaptation high spatial resolution
原文传递
Uncertainties of landslide susceptibility prediction:Influences of different spatial resolutions,machine learning models and proportions of training and testing dataset
14
作者 Faming Huang Zuokui Teng +2 位作者 Zizheng Guo Filippo Catani Jinsong Huang 《Rock Mechanics Bulletin》 2023年第1期65-81,共17页
This study aims to reveal the impacts of three important uncertainty issues in landslide susceptibility prediction(LSP),namely the spatial resolution,proportion of model training and testing datasets and selection of ... This study aims to reveal the impacts of three important uncertainty issues in landslide susceptibility prediction(LSP),namely the spatial resolution,proportion of model training and testing datasets and selection of machine learning models.Taking Yanchang County of China as example,the landslide inventory and 12 important conditioning factors were acquired.The frequency ratios of each conditioning factor were calculated under five spatial resolutions(15,30,60,90 and 120 m).Landslide and non-landslide samples obtained under each spatial resolution were further divided into five proportions of training and testing datasets(9:1,8:2,7:3,6:4 and 5:5),and four typical machine learning models were applied for LSP modelling.The results demonstrated that different spatial resolution and training and testing dataset proportions induce basically similar influences on the modeling uncertainty.With a decrease in the spatial resolution from 15 m to 120 m and a change in the proportions of the training and testing datasets from 9:1 to 5:5,the modelling accuracy gradually decreased,while the mean values of predicted landslide susceptibility indexes increased and their standard deviations decreased.The sensitivities of the three uncertainty issues to LSP modeling were,in order,the spatial resolution,the choice of machine learning model and the proportions of training/testing datasets. 展开更多
关键词 Landslide susceptibility prediction Uncertainty analysis Machine learning models Conditioning factors spatial resolution Proportions of training and testing dataset
原文传递
High-Resolution Remote Sensing Imagery for the Recognition of Traditional Villages
15
作者 Mengchen Wang Linshuhong Shen 《Journal of Architectural Research and Development》 2024年第1期75-83,共9页
Traditional Chinese villages,vital carriers of traditional culture,have faced significant alterations due to urbanization in recent years,urgently necessitating artificial intelligence data updates.This study integrat... Traditional Chinese villages,vital carriers of traditional culture,have faced significant alterations due to urbanization in recent years,urgently necessitating artificial intelligence data updates.This study integrates high spatial resolution remote sensing imagery with deep learning techniques,proposing a novel method for identifying rooftops of traditional Chinese village buildings using high-definition remote sensing images.Using 0.54 m spatial resolution imagery of traditional village areas as the data source,this method analyzes the geometric and spectral image characteristics of village building rooftops.It constructs a deep learning feature sample library tailored to the target types.Employing a semantically enhanced version of the improved Mask R-CNN(Mask Region-based Convolutional Neural Network)for building recognition,the study conducts experiments on localized imagery from different regions.The results demonstrated that the modified Mask R-CNN effectively identifies traditional village building rooftops,achieving an of 0.7520 and an of 0.7400.It improves the current problem of misidentification and missed detection caused by feature heterogeneity.This method offers a viable and effective approach for industrialized data monitoring of traditional villages,contributing to their sustainable development. 展开更多
关键词 Traditional villages Building rooftops High spatial resolution remote sensing Instance segmentation
下载PDF
Effects of spatial resolution of remotely sensed data on estimating urban impervious surfaces 被引量:9
16
作者 Weifeng Li Zhiyun Ouyang +1 位作者 Weiqi Zhou Qiuwen Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第8期1375-1383,共9页
Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure t... Impervious surfaces are the result of urbanization that can be explicitly quantified, managed and controlled at each stage of land development. It is a very useful environmental indicator that can be used to measure the impacts of urbanization on surface runoff, water quality, air quality, biodiversity and rnicroclimate. Therefore, accurate estimation of impervious surfaces is critical for urban environmental monitoring, land management, decision-making and urban planning. Many approaches have been developed to estimate surface imperviousness, using remotely sensed data with various spatial resolutions. However, few studies, have investigated the effects of spatial resolution on estimating surface imperviousness. We compare medium-resolution Landsat data with high-resolution SPOT images to quantify the imperviousness in Beijing, China. The results indicated that the overall 91% accuracy of estimates of imperviousness based on TM data was considerably higher than the 81% accuracy of the SPOT data. The higher resolution SPOT data did not always predict the imperviousness of the land better than the TM data. At the whole city level, the TM data better predicts the percentage cover of impervious surfaces. At the sub-city level, however, the ring belts from the central core to the urban-rural peripheral, the SPOT data may better predict the imperviousness. These results highlighted the need to combine multiple resolution data to quantify the percentage of imperviousness, as higher resolution data do not necessarily lead to more accurate estimates. The methodology and results in this study can be utilized to identify the most suitable remote sensing data to quickly and efficiently extract the pattern of the impervious land, which could provide the base for further study on many related urban environmental problems. 展开更多
关键词 remote sensing impervious surface landscape pattern spatial resolution object-based image analysis urban landscape
原文传递
Study of measuring methods on spatial resolution of a GEM imaging detector 被引量:4
17
作者 吕新宇 樊瑞睿 +11 位作者 陈元柏 欧阳群 刘荣光 刘鹏 祁辉荣 张健 赵平平 赵东旭 赵豫斌 章红宇 盛华义 董丽媛 《Chinese Physics C》 SCIE CAS CSCD 2012年第3期228-234,共7页
In this paper, the limitations of the common method measuring intrinsic spatial resolution of the GEM imaging detector are presented. Through theoretical analysis and experimental verification, we have improved the co... In this paper, the limitations of the common method measuring intrinsic spatial resolution of the GEM imaging detector are presented. Through theoretical analysis and experimental verification, we have improved the common method to avoid these limitations. Using these improved methods, a more precise measurement of intrinsic spatial resolutions are obtained. 展开更多
关键词 spatial resolution imaging detector GEM CONVOLUTION DECONVOLUTION
原文传递
Beam hardening correction for a cone-beam CT system and its effect on spatial resolution 被引量:5
18
作者 赵维 付国涛 +8 位作者 孙翠丽 王燕芳 魏存峰 曹大泉 阙介民 唐晓 史戒坚 魏龙 郁忠强 《Chinese Physics C》 SCIE CAS CSCD 2011年第10期978-985,共8页
In this paper, we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resol... In this paper, we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution. Due to the polychromatic character of the X-ray spectrum used, cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images, causing reduced image quality. In addition, enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect. The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space. Thus, in the CT images with beam hardening artifacts, enhanced ERFs will be extracted to calculate the modulation transfer function (MTF), obtaining a better spatial resolution that deviates from the real value. Reasonable spatial resolution can be obtained after reducing the artifacts. The 10% MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented. 展开更多
关键词 beam hardening correction cone-beam computed tomography spatial resolution
原文传递
Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples 被引量:5
19
作者 WEI YAN YANLONG YANG +4 位作者 YU TAN XUN CHEN YANG LI JUNLE QU TONG YE 《Photonics Research》 SCIE EI 2017年第3期176-181,共6页
Stimulated emission depletion(STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the ... Stimulated emission depletion(STED) microscopy is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of a specimen's optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the severe distortion of the depletion beam profile may cause complete loss of the superresolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is difficult to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique. The full correction can effectively maintain and improve spatial resolution in imaging thick samples. 展开更多
关键词 STED is Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples of in
原文传递
High Spatial Resolution and High Temporal Frequency(30-m/15-day) Fractional Vegetation Cover Estimation over China Using Multiple Remote Sensing Datasets:Method Development and Validation 被引量:4
20
作者 Xihan MU Tian ZHAO +8 位作者 Gaiyan RUAN Jinling SONG Jindi WANG Guangjian YAN Tim RMCVICAR Kai YAN Zhan GAO Yaokai LIU Yuanyuan WANG 《Journal of Meteorological Research》 SCIE CSCD 2021年第1期128-147,共20页
High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estima... High spatial resolution and high temporal frequency fractional vegetation cover(FVC) products have been increasingly in demand to monitor and research land surface processes. This paper develops an algorithm to estimate FVC at a 30-m/15-day resolution over China by taking advantage of the spatial and temporal information from different types of sensors: the 30-m resolution sensor on the Chinese environment satellite(HJ-1) and the 1-km Moderate Resolution Imaging Spectroradiometer(MODIS). The algorithm was implemented for each main vegetation class and each land cover type over China. First, the high spatial resolution and high temporal frequency normalized difference vegetation index(NDVI) was acquired by using the continuous correction(CC) data assimilation method. Then, FVC was generated with a nonlinear pixel unmixing model. Model coefficients were obtained by statistical analysis of the MODIS NDVI. The proposed method was evaluated based on in situ FVC measurements and a global FVC product(GEOV1 FVC). Direct validation using in situ measurements at 97 sampling plots per half month in 2010 showed that the annual mean errors(MEs) of forest, cropland, and grassland were-0.025, 0.133, and 0.160, respectively, indicating that the FVCs derived from the proposed algorithm were consistent with ground measurements [R2 = 0.809,root-mean-square deviation(RMSD) = 0.065]. An intercomparison between the proposed FVC and GEOV1 FVC demonstrated that the two products had good spatial–temporal consistency and similar magnitude(RMSD approximates 0.1). Overall, the approach provides a new operational way to estimate high spatial resolution and high temporal frequency FVC from multiple remote sensing datasets. 展开更多
关键词 fractional vegetation cover(FVC) high spatial resolution and high temporal frequency data fusion normalized difference vegetation index(NDVI) pixel unmixing model multiple remote sensing datasets
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部