This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s...This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.展开更多
We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-r...We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51278217)
文摘This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.
文摘We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.