Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran...The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.展开更多
Cholera remains a public health threat in most developing countries in Asia and Africa including Malawi with seasonal recurrent outbreaks. Malawi’s recent Cholera outbreak in 2022 and 2023, exhibited higher morbidity...Cholera remains a public health threat in most developing countries in Asia and Africa including Malawi with seasonal recurrent outbreaks. Malawi’s recent Cholera outbreak in 2022 and 2023, exhibited higher morbidity and mortality rates than the past two decades. Lack of spatiotemporal-based technology and variability assessment tools in Malawi’s Cholera monitoring and management, limit our understanding of the disease’s epidemiology. The present work developed a spatiotemporal variability model for Cholera disease at district level and its relationship to socioeconomic and climatic factors based on cumulative confirmed Cholera cases in Malawi from March 2022 to July 2023 using Z-score statistic and multiscale geographically weighted regression (MGWR) in a Geographical Information System (GIS). We found out that socioeconomic factors such as access to safe drinking water, population density and poverty level, and climatic factors including temperature and rainfall strongly influenced Cholera prevalence in a complex and multifaceted manner. The model shows that Lilongwe, Mangochi, Blantyre and Balaka districts were highly vulnerable to Cholera disease followed by lakeshore districts of Salima, Nkhotakota, Nkhata-Bay and Karonga than other districts. We recommend strategic measures such as Water, Sanitation, and Hygiene (WASH) interventions, community awareness on proper water storage, Cholera case management, vaccination campaigns and spatial-based surveillance systems in the most affected districts. This research has shown that MGWR, as a surveillance system, has the potential of providing insights on the disease’s spatial patterns for public health authorities to identify high-risk districts and implement early response interventions to reduce the spread of the disease.展开更多
Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spat...Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land.展开更多
In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due ...In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations.展开更多
Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,...Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,including inflammatory,metabolic,mechanical,genetic,and synovial variants.Consequently,innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches.Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints,causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues.This issue has led to standardization difficulties and hindered the success of clinical trials.Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues,encompassing DNA,RNA,metabolites,and proteins,as well as their chemical properties,elemental composition,and mechanical attributes,can contribute to a more comprehensive understanding of the disease subtypes.Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment,providing a more holistic view of cellular function.Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various-omics lenses,such as genomics,transcriptomics,proteomics,and metabolomics,with spatial data.This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates.Furthermore,advanced imaging techniques,including high-resolution microscopy,hyperspectral imaging,and mass spectrometry imaging,enable the visualization and analysis of the spatial distribution of biomolecules,cells,and tissues.Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes.This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis.It explores their applications,challenges,and potential opportunities in the field of OA.Additionally,this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.展开更多
A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long process...A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.展开更多
It is essential to minimize soil quality degradation in sloping agricultural fields through stabilization and improvement of soil hydraulic properties using sustainable soil management.This study aimed to analyze the ...It is essential to minimize soil quality degradation in sloping agricultural fields through stabilization and improvement of soil hydraulic properties using sustainable soil management.This study aimed to analyze the impact of different tillage practices,including conventional tillage(CT),minimum tillage(MT),and zero tillage(ZT),on soil hydraulic conductivity in a sloping agricultural field under maizeewheat rotation.The results showed that the highest runoff volume(257.40 m3),runoff coefficient(42.84%),and soil loss(11.3 t)were observed when the CT treatment was applied.In contrast,the lowest runoff volume(67.95 m3),runoff coefficient(11.35%),and soil loss(1.05 t)were observed when the ZT treatment was adopted.The soil organic carbon and aggregate mean weight diameter were found to be significantly greater(with mean values of 0.79%and 1.19 mm,respectively)with the ZT treatment than with the CT treatment.With the tilled treatments(CT and MT),substantial changes in the saturated soil hydraulic conductivity(ks),near-saturated soil hydraulic conductivity(k),and water-conducting porosity(ε)were observed between two crop seasons.These three soil parameters were significantly higher in the period after maize harvesting than in the wheat growing period.In contrast,no significant difference in these soil parameters was found when the untilled treatment(ZT)was carried out.With regard to the slope positions,ks,k,andεshowed different behaviors under different treatments.The toe slope position showed significantly lower ks andεvalues than the summit and middle slope positions.Of the evaluated tillage practices,ZT was found to be the most promising means to improve the soil hydro-physical properties and effectively reduce surface runoff and soil erosion.展开更多
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ...On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
Cotton is a revenue source for cotton-producing countries;as the second-largest crop in Pakistan,it significantly contributes to its economy.Over the past few decades,cotton productivity has become unstable in Pakista...Cotton is a revenue source for cotton-producing countries;as the second-largest crop in Pakistan,it significantly contributes to its economy.Over the past few decades,cotton productivity has become unstable in Pakistan,and climate change is one of the main factors that impact cotton yield.Due to climate change,it becomes very important to understand the change trend and its impact on cotton yield at the regional level.Here,we investigate the relationship of standardized cotton yield variability with the variability of climate factors using a 15-yr moving window.The piecewise regression was fitted to obtain the trend-shifting point of climate factors.The results show that precipitation has experienced an overall decreasing trend of–0.64 mm/yr during the study period,with opposing trends of–1.39 mm/yr and 1.52 mm/yr before and after the trend-shifting point,respectively.We found that cotton yield variability increased at a rate of 0.17%/yr,and this trend was highly correlated with the variability of climate factors.The multiple regression analysis explains that climate variability is a dominant factor and controlled 81%of the cotton production in the study area from 1990 to 2019,while it controlled 73%of the production from 1990 to 2002 and 84%from 2002 to 2019.These findings reveal that climate factors affact the distinct spatial pattern of changes in cotton yield variability at the tehsil level.展开更多
This study evaluates the distribution of COVID-19 cases and mass vaccination campaigns from January 2020 to April 2023. There are over 235,000 COVID-19 cases and over 733,000 vaccinations across the 159 counties in th...This study evaluates the distribution of COVID-19 cases and mass vaccination campaigns from January 2020 to April 2023. There are over 235,000 COVID-19 cases and over 733,000 vaccinations across the 159 counties in the state of Georgia. Data on COVID-19 was acquired from usafact.org while the vaccination records were obtained from COVID-19 vaccination tracker. The spatial patterns across the counties were analyzed using spatial statistical techniques which include both global and local spatial autocorrelation. The study further evaluates the effect of vaccination and selected socio-economic predictors on COVID-19 cases across the study area. The result of hotspot analysis reveals that the epicenters of COVID-19 are distributed across Cobb, Fulton, Gwinnett, and DeKalb counties. It was also affirmed that the vaccination records followed the same pattern as COVID-19 cases’ epicenters. The result of the spatial error model performed well and accounted for a considerable percentage of the regression with an adjusted R squared of 0.68, Akaike Information Criterion (AIC) 387.682 and Breusch-Pagan of 9.8091. ESDA was employed to select the main explanatory variables. The selected variables include vaccination, population density, percentage of people that do not have health insurance, black race, Hispanic and these variables accounted for 68% of the number of COVID-19 cases in the state of Georgia during the study period. The study concludes that both COVID-19 cases and vaccinated individuals have spatial peculiarities across counties in Georgia state. Lastly, socio-economic variables and vaccination are very important to reduce the vulnerability of individuals to COVID-19 disease.展开更多
With the rapid urbanization process,the space of traditional villages in China is undergoing significant changes.Studying the spatial evolution of traditional villages is significant in promoting rural spatial transfo...With the rapid urbanization process,the space of traditional villages in China is undergoing significant changes.Studying the spatial evolution of traditional villages is significant in promoting rural spatial transformation and realizing rural revitalization and sustainable rural development.Based on the traceability analysis of spatial production theory,this paper constructed an analytical framework for the spatial production evolution of traditional villages,analyzed the spatial evolution process and characteristics of traditional villages by using buffer analysis,spatial syntax,and other research methods,and revealed the characteristics of the spatial production evolution of traditional villages and the driving mechanism.The results show that:(1)The village spatial formation and development follow the village life cycle theory and usually develop from embryonic villages to diversified and integrated villages;(2)The evolution of village spatial production is characterized by the diversity of material space,the sublimation of daily life space,and the integration of social system space and generalization of emotional space;(3)The evolution of village spatial production from backward and poor village to ecologically well-off village is influenced by a combination of factors;(4)The village has formed a spatial structure of"people-land-scape-culture-industry",realized comprehensive reconstruction and spatial reproduction.The study results reflect the spatial evolution characteristics of traditional villages in mountainous areas in a more comprehensive way,which helps to promote the protection and development of traditional villages in mountainous areas and,to a certain extent,provides a reference for the development of rural revitalization.展开更多
The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cel...The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cell types and heterogeneity in the respiratory system,the relevant specific spatial localization and cellular interactions have not been clearly elucidated.Spatial transcriptomics(ST)has filled this gap and has been widely used in respiratory studies.This review focuses on the latest iterative technology of ST in recent years,summarizing how ST can be applied to the physiological and pathological processes of the respiratory system,with emphasis on the lungs.Finally,the current challenges and potential development directions are proposed,including high-throughput full-length transcriptome,integration of multi-omics,temporal and spatial omics,bioinformatics analysis,etc.These viewpoints are expected to advance the study of systematic mechanisms,including respiratory studies.展开更多
Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the sp...Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the spatial equality of COVID-19 testing sites that maintain a zero COVID policy in Guangzhou City. The study has identified the spatial disparities of COVID testing sites, characteristics of testing locations, and accessibility. The study has obtained information on COVID testing sites in Guangzhou City and population data. Point pattern analyses, Euclidian distance and allocation, and network analyses are the main methods used to achieve the research objectives, and 1183 total COVID testing sites can be recognized in Guangzhou City. Results revealed that spatial disparities could be noticed over the study area. Testing locations of Guangzhou City are highly clustered. The most significant testing sites are located in Haizhu District, which has the third largest population. The highest population density can be identified in Yuexiu District. However, only 94 testing sites are located there. According to all the results, higher disparities can be identified, and a lack of testing sites is located in the north part of the study area. Some people in the northern part have to travel more than 10 km to reach a testing site. Finally, this paper suggests increasing the number of testing sites in the north and south parts of the study area and keeping the same distribution, considering the area, total population, and population density. This kind of research will be helpful to decision-makers in making proper decisions to maintain a zero COVID policy.展开更多
The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized tha...The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.展开更多
This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement sp...This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.展开更多
Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensi...Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensive database of transboundary natural tourism resources(TNTR)through amalgamation of diverse data sources.Utilizing the Getis-Ord Gi^(*),kernel density estimation,and geographical detectors,we scrutinize the spatial patterns of TNTR,focusing on both named and unnamed entities,while exploring the influencing factors.Our findings reveal 7883 identified TNTR in China,with mountain tourism resources emerging as the predominant type.Among provinces,Hunan boasts the highest count,while Shanghai exhibits the lowest.Southern China demonstrates a pronounced clustering trend in TNTR distribution,with the spatial arrangement of biological landscapes appearing more random compared to geological and water landscapes.Western China,characterized by intricate terrain,exhibits fewer TNTR,concurrently unveiling a significant presence of unnamed natural tourism resources.Crucially,administrative segmentation influences TNTR development,generating disparities in regional goals,developmental stages and intensities,and management approaches.In response to these variations,we advocate for strengthening the naming of the unnamed transboundary tourism resources,constructing a geographic database of TNTR for government and establishing a collaborative management mechanism based on TNTR database.Our research contributes to elucidating the intricate landscape of TNTR,offering insights for tailored governance strategies in the realm of cross-provincial tourism resource management.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20594)the Fundamental Research Funds for the Central Universities(Grant No.B230205028)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0694).
文摘The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.
文摘Cholera remains a public health threat in most developing countries in Asia and Africa including Malawi with seasonal recurrent outbreaks. Malawi’s recent Cholera outbreak in 2022 and 2023, exhibited higher morbidity and mortality rates than the past two decades. Lack of spatiotemporal-based technology and variability assessment tools in Malawi’s Cholera monitoring and management, limit our understanding of the disease’s epidemiology. The present work developed a spatiotemporal variability model for Cholera disease at district level and its relationship to socioeconomic and climatic factors based on cumulative confirmed Cholera cases in Malawi from March 2022 to July 2023 using Z-score statistic and multiscale geographically weighted regression (MGWR) in a Geographical Information System (GIS). We found out that socioeconomic factors such as access to safe drinking water, population density and poverty level, and climatic factors including temperature and rainfall strongly influenced Cholera prevalence in a complex and multifaceted manner. The model shows that Lilongwe, Mangochi, Blantyre and Balaka districts were highly vulnerable to Cholera disease followed by lakeshore districts of Salima, Nkhotakota, Nkhata-Bay and Karonga than other districts. We recommend strategic measures such as Water, Sanitation, and Hygiene (WASH) interventions, community awareness on proper water storage, Cholera case management, vaccination campaigns and spatial-based surveillance systems in the most affected districts. This research has shown that MGWR, as a surveillance system, has the potential of providing insights on the disease’s spatial patterns for public health authorities to identify high-risk districts and implement early response interventions to reduce the spread of the disease.
基金supported by the National Key R&D Program of China (Grant No.2019YFA0607202)the National Natural Science Foundation of China (Grant Nos. 42021004 and 42005143)+2 种基金support by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No. KYCX21_0978)support by the Open Research Fund Program of the Key Laboratory of Urban Meteorology,China Meteorological Administration (Grant No. LUM-2023-12)the 333 Project of Jiangsu Province (Grant No. BRA2022023)
文摘Few studies have investigated the spatial patterns of the air temperature urban heat island(AUHI)and its controlling factors.In this study,the data generated by an urban climate model were used to investigate the spatial variations of the AUHI across China and the underlying climate and ecological drivers.A total of 355 urban clusters were used.We performed an attribution analysis of the AUHI to elucidate the mechanisms underlying its formation.The results show that the midday AUHI is negatively correlated with climate wetness(humid:0.34 K;semi-humid:0.50 K;semi-arid:0.73 K).The annual mean midnight AUHI does not show discernible spatial patterns,but is generally stronger than the midday AUHI.The urban–rural difference in convection efficiency is the largest contributor to the midday AUHI in the humid(0.32±0.09 K)and the semi-arid(0.36±0.11 K)climate zones.The release of anthropogenic heat from urban land is the dominant contributor to the midnight AUHI in all three climate zones.The rural vegetation density is the most important driver of the daytime and nighttime AUHI spatial variations.A spatial covariance analysis revealed that this vegetation influence is manifested mainly through its regulation of heat storage in rural land.
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.41977240)the Fundamental Research Funds for the Central Universities(Grant No.B200202090).
文摘In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations.
基金the NHMRC Investigator grant fellowship (APP1176298)the EMCR grant from the Centre for Biomedical Technologies (QUT)+4 种基金the QUT Postgraduate Research Award (QUTPRA)QUT HDR TOP-UP scholarshipQUT HDR Tuition Fee Sponsorshipfunding support from the Academy of Finland (315820)the Jane and Aatos Erkko Foundation (190001).
文摘Osteoarthritis(OA)is a debilitating degenerative disease affecting multiple joint tissues,including cartilage,bone,synovium,and adipose tissues.OA presents diverse clinical phenotypes and distinct molecular endotypes,including inflammatory,metabolic,mechanical,genetic,and synovial variants.Consequently,innovative technologies are needed to support the development of effective diagnostic and precision therapeutic approaches.Traditional analysis of bulk OA tissue extracts has limitations due to technical constraints,causing challenges in the differentiation between various physiological and pathological phenotypes in joint tissues.This issue has led to standardization difficulties and hindered the success of clinical trials.Gaining insights into the spatial variations of the cellular and molecular structures in OA tissues,encompassing DNA,RNA,metabolites,and proteins,as well as their chemical properties,elemental composition,and mechanical attributes,can contribute to a more comprehensive understanding of the disease subtypes.Spatially resolved biology enables biologists to investigate cells within the context of their tissue microenvironment,providing a more holistic view of cellular function.Recent advances in innovative spatial biology techniques now allow intact tissue sections to be examined using various-omics lenses,such as genomics,transcriptomics,proteomics,and metabolomics,with spatial data.This fusion of approaches provides researchers with critical insights into the molecular composition and functions of the cells and tissues at precise spatial coordinates.Furthermore,advanced imaging techniques,including high-resolution microscopy,hyperspectral imaging,and mass spectrometry imaging,enable the visualization and analysis of the spatial distribution of biomolecules,cells,and tissues.Linking these molecular imaging outputs to conventional tissue histology can facilitate a more comprehensive characterization of disease phenotypes.This review summarizes the recent advancements in the molecular imaging modalities and methodologies for in-depth spatial analysis.It explores their applications,challenges,and potential opportunities in the field of OA.Additionally,this review provides a perspective on the potential research directions for these contemporary approaches that can meet the requirements of clinical diagnoses and the establishment of therapeutic targets for OA.
基金supported by the National Natural Science Foundation of China(No.12075237)。
文摘A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.
文摘It is essential to minimize soil quality degradation in sloping agricultural fields through stabilization and improvement of soil hydraulic properties using sustainable soil management.This study aimed to analyze the impact of different tillage practices,including conventional tillage(CT),minimum tillage(MT),and zero tillage(ZT),on soil hydraulic conductivity in a sloping agricultural field under maizeewheat rotation.The results showed that the highest runoff volume(257.40 m3),runoff coefficient(42.84%),and soil loss(11.3 t)were observed when the CT treatment was applied.In contrast,the lowest runoff volume(67.95 m3),runoff coefficient(11.35%),and soil loss(1.05 t)were observed when the ZT treatment was adopted.The soil organic carbon and aggregate mean weight diameter were found to be significantly greater(with mean values of 0.79%and 1.19 mm,respectively)with the ZT treatment than with the CT treatment.With the tilled treatments(CT and MT),substantial changes in the saturated soil hydraulic conductivity(ks),near-saturated soil hydraulic conductivity(k),and water-conducting porosity(ε)were observed between two crop seasons.These three soil parameters were significantly higher in the period after maize harvesting than in the wheat growing period.In contrast,no significant difference in these soil parameters was found when the untilled treatment(ZT)was carried out.With regard to the slope positions,ks,k,andεshowed different behaviors under different treatments.The toe slope position showed significantly lower ks andεvalues than the summit and middle slope positions.Of the evaluated tillage practices,ZT was found to be the most promising means to improve the soil hydro-physical properties and effectively reduce surface runoff and soil erosion.
基金supported by the National Natural Science Foundation of China project (No. 42372339)the China Geological Survey Project (Nos. DD20221816, DD20190319)。
文摘On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金Under the auspices of National Key Research and Development Program of China (No.2017YFA0604403-3,2016YFA0602301)the Joint Fund of National Natural Science Foundation of China (No.U19A2023)。
文摘Cotton is a revenue source for cotton-producing countries;as the second-largest crop in Pakistan,it significantly contributes to its economy.Over the past few decades,cotton productivity has become unstable in Pakistan,and climate change is one of the main factors that impact cotton yield.Due to climate change,it becomes very important to understand the change trend and its impact on cotton yield at the regional level.Here,we investigate the relationship of standardized cotton yield variability with the variability of climate factors using a 15-yr moving window.The piecewise regression was fitted to obtain the trend-shifting point of climate factors.The results show that precipitation has experienced an overall decreasing trend of–0.64 mm/yr during the study period,with opposing trends of–1.39 mm/yr and 1.52 mm/yr before and after the trend-shifting point,respectively.We found that cotton yield variability increased at a rate of 0.17%/yr,and this trend was highly correlated with the variability of climate factors.The multiple regression analysis explains that climate variability is a dominant factor and controlled 81%of the cotton production in the study area from 1990 to 2019,while it controlled 73%of the production from 1990 to 2002 and 84%from 2002 to 2019.These findings reveal that climate factors affact the distinct spatial pattern of changes in cotton yield variability at the tehsil level.
文摘This study evaluates the distribution of COVID-19 cases and mass vaccination campaigns from January 2020 to April 2023. There are over 235,000 COVID-19 cases and over 733,000 vaccinations across the 159 counties in the state of Georgia. Data on COVID-19 was acquired from usafact.org while the vaccination records were obtained from COVID-19 vaccination tracker. The spatial patterns across the counties were analyzed using spatial statistical techniques which include both global and local spatial autocorrelation. The study further evaluates the effect of vaccination and selected socio-economic predictors on COVID-19 cases across the study area. The result of hotspot analysis reveals that the epicenters of COVID-19 are distributed across Cobb, Fulton, Gwinnett, and DeKalb counties. It was also affirmed that the vaccination records followed the same pattern as COVID-19 cases’ epicenters. The result of the spatial error model performed well and accounted for a considerable percentage of the regression with an adjusted R squared of 0.68, Akaike Information Criterion (AIC) 387.682 and Breusch-Pagan of 9.8091. ESDA was employed to select the main explanatory variables. The selected variables include vaccination, population density, percentage of people that do not have health insurance, black race, Hispanic and these variables accounted for 68% of the number of COVID-19 cases in the state of Georgia during the study period. The study concludes that both COVID-19 cases and vaccinated individuals have spatial peculiarities across counties in Georgia state. Lastly, socio-economic variables and vaccination are very important to reduce the vulnerability of individuals to COVID-19 disease.
基金supported by the National Natural Science Foundation of China(Grant No.42061035)the Guizhou Provincial Program on Commercialization of Scientific and Technological Achievements([2022]010).
文摘With the rapid urbanization process,the space of traditional villages in China is undergoing significant changes.Studying the spatial evolution of traditional villages is significant in promoting rural spatial transformation and realizing rural revitalization and sustainable rural development.Based on the traceability analysis of spatial production theory,this paper constructed an analytical framework for the spatial production evolution of traditional villages,analyzed the spatial evolution process and characteristics of traditional villages by using buffer analysis,spatial syntax,and other research methods,and revealed the characteristics of the spatial production evolution of traditional villages and the driving mechanism.The results show that:(1)The village spatial formation and development follow the village life cycle theory and usually develop from embryonic villages to diversified and integrated villages;(2)The evolution of village spatial production is characterized by the diversity of material space,the sublimation of daily life space,and the integration of social system space and generalization of emotional space;(3)The evolution of village spatial production from backward and poor village to ecologically well-off village is influenced by a combination of factors;(4)The village has formed a spatial structure of"people-land-scape-culture-industry",realized comprehensive reconstruction and spatial reproduction.The study results reflect the spatial evolution characteristics of traditional villages in mountainous areas in a more comprehensive way,which helps to promote the protection and development of traditional villages in mountainous areas and,to a certain extent,provides a reference for the development of rural revitalization.
基金supported by the National Natural Science Foundation of China(82271629)the Central Funds Guiding the Local Science and Technology Development of Shenzhen(2021Szvup024)+1 种基金the Jiangsu Provincial Key Research and Development Program(BE2021664)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0312)。
文摘The respiratory system's complex cellular heterogeneity presents unique challenges to researchers in this field.Although bulk RNA sequencing and single-cell RNA sequencing(scRNA-seq)have provided insights into cell types and heterogeneity in the respiratory system,the relevant specific spatial localization and cellular interactions have not been clearly elucidated.Spatial transcriptomics(ST)has filled this gap and has been widely used in respiratory studies.This review focuses on the latest iterative technology of ST in recent years,summarizing how ST can be applied to the physiological and pathological processes of the respiratory system,with emphasis on the lungs.Finally,the current challenges and potential development directions are proposed,including high-throughput full-length transcriptome,integration of multi-omics,temporal and spatial omics,bioinformatics analysis,etc.These viewpoints are expected to advance the study of systematic mechanisms,including respiratory studies.
文摘Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the spatial equality of COVID-19 testing sites that maintain a zero COVID policy in Guangzhou City. The study has identified the spatial disparities of COVID testing sites, characteristics of testing locations, and accessibility. The study has obtained information on COVID testing sites in Guangzhou City and population data. Point pattern analyses, Euclidian distance and allocation, and network analyses are the main methods used to achieve the research objectives, and 1183 total COVID testing sites can be recognized in Guangzhou City. Results revealed that spatial disparities could be noticed over the study area. Testing locations of Guangzhou City are highly clustered. The most significant testing sites are located in Haizhu District, which has the third largest population. The highest population density can be identified in Yuexiu District. However, only 94 testing sites are located there. According to all the results, higher disparities can be identified, and a lack of testing sites is located in the north part of the study area. Some people in the northern part have to travel more than 10 km to reach a testing site. Finally, this paper suggests increasing the number of testing sites in the north and south parts of the study area and keeping the same distribution, considering the area, total population, and population density. This kind of research will be helpful to decision-makers in making proper decisions to maintain a zero COVID policy.
基金supported in part by the NIH grant R01CA241134supported in part by the NSF grant CMMI-1552764+3 种基金supported in part by the NSF grants DMS-1349724 and DMS-2052465supported in part by the NSF grant CCF-1740761supported in part by the U.S.-Norway Fulbright Foundation and the Research Council of Norway R&D Grant 309273supported in part by the Norwegian Centennial Chair grant and the Doctoral Dissertation Fellowship from the University of Minnesota.
文摘The spread of an advantageous mutation through a population is of fundamental interest in population genetics. While the classical Moran model is formulated for a well-mixed population, it has long been recognized that in real-world applications, the population usually has an explicit spatial structure which can significantly influence the dynamics. In the context of cancer initiation in epithelial tissue, several recent works have analyzed the dynamics of advantageous mutant spread on integer lattices, using the biased voter model from particle systems theory. In this spatial version of the Moran model, individuals first reproduce according to their fitness and then replace a neighboring individual. From a biological standpoint, the opposite dynamics, where individuals first die and are then replaced by a neighboring individual according to its fitness, are equally relevant. Here, we investigate this death-birth analogue of the biased voter model. We construct the process mathematically, derive the associated dual process, establish bounds on the survival probability of a single mutant, and prove that the process has an asymptotic shape. We also briefly discuss alternative birth-death and death-birth dynamics, depending on how the mutant fitness advantage affects the dynamics. We show that birth-death and death-birth formulations of the biased voter model are equivalent when fitness affects the former event of each update of the model, whereas the birth-death model is fundamentally different from the death-birth model when fitness affects the latter event.
文摘This study aims to reveal the spatial structural characteristics of 1,652 Ethnic-Minority Villages(EMV)in China and to analyze the mechanisms driving their spatial heterogeneity.EMV are a special type of settlement space that preserve a large number of historical traces of the ethnic culture of ancient China.They are important carriers of China’s excellent traditional culture and are key to the implementation of rural revitalization strategies.In this study,1652 EMV in China were selected as the research subjects.The Nearest Neighbor Index,kernel density,and spatial autocorrelation index were employed to reveal the spatial structural characteristics of minority villages.Neural network models,spatial lag models,and geographical detectors were used to analyze the formation mechanism of spatial heterogeneity in EMV.The results indicate that:(1)EMV exhibit significant spatial differentiation characterized by“single-core with multiple surrounding sub-centers,”“polarization between east and west,”“decreasing quantity from southwest to east coast to northeast to northwest,”and“large dispersion with small agglomeration.”(2)EMV are mainly distributed in areas rich in intangible cultural heritage,with high vegetation coverage and low altitude,far from central cities,and having limited arable land and an underdeveloped economy and transportation,particularly in shaded or riverbank areas.(3)Distance from the nearest river(X3),distance from central cities(X8),national intangible cultural heritage(X9),and NDVI(X10)were the main driving factors affecting the spatial distribution of EMV,whereas elevation(X1)and GDP(X5)had the weakest influence.As EMV are a relatively unique territorial spatial unit,the identification of their spatial heterogeneity characteristics not only deepens the research content of settlement geography,but also involves the assessment,protection,and development of Minority Villages,which is of great significance for the inheritance and utilization of excellent ethnic cultures in the era.
基金funded by the by the Youth Program of the National Natural Science Foundation of China(Grants No.42001243,and 42201311)the Humanities and Social Science Project of the Ministry of Education,China(Grants No.20YJC630212,and 22YJCZH071)+1 种基金the Youth Program of the Natural Science Foundation of Shandong Province,China(Grants No.ZR2020QD008)Frontier Science Research Support Program,Management College,OUC(Grants No.MCQYZD2305,and MCQYYB2309).
文摘Tourism resources that span provincial boundaries in China play a pivotal role in regional development,yet effective governance poses persistent challenges.This study addresses this issue by constructing a comprehensive database of transboundary natural tourism resources(TNTR)through amalgamation of diverse data sources.Utilizing the Getis-Ord Gi^(*),kernel density estimation,and geographical detectors,we scrutinize the spatial patterns of TNTR,focusing on both named and unnamed entities,while exploring the influencing factors.Our findings reveal 7883 identified TNTR in China,with mountain tourism resources emerging as the predominant type.Among provinces,Hunan boasts the highest count,while Shanghai exhibits the lowest.Southern China demonstrates a pronounced clustering trend in TNTR distribution,with the spatial arrangement of biological landscapes appearing more random compared to geological and water landscapes.Western China,characterized by intricate terrain,exhibits fewer TNTR,concurrently unveiling a significant presence of unnamed natural tourism resources.Crucially,administrative segmentation influences TNTR development,generating disparities in regional goals,developmental stages and intensities,and management approaches.In response to these variations,we advocate for strengthening the naming of the unnamed transboundary tourism resources,constructing a geographic database of TNTR for government and establishing a collaborative management mechanism based on TNTR database.Our research contributes to elucidating the intricate landscape of TNTR,offering insights for tailored governance strategies in the realm of cross-provincial tourism resource management.