Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by la...Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).展开更多
Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However...Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However,the spatiotemporal variations of tenebrionid beetle assemblages in the Gobi desert remain poorly understood.In this study,the monthly dynamics of tenebrionid beetles in the central part of the Hexi Corridor,Northwest China,a representative area of the Gobi desert ecosystems,were monitored using pitfall trapping during 2015-2020.The following results were showed:(1)monthly activity of tenebrionid beetles was observed from March to October,with monthly activity peaking in spring and summer,and monthly activity periods and peak of tenebrionid beetle species exhibited interspecific differences that varied from year to year;(2)spatial distribution of tenebrionid beetle community was influenced by structural factors.Specifically,at a spatial scale of 24.00 m,tenebrionid beetle community was strongly and positively correlated with the dominant species,with distinct spatial distribution patterns observed for Blaps gobiensis and Microdera kraatzi alashanica;(3)abundance of tenebrionid beetles was positively correlated with monthly mean precipitation and monthly mean temperature,whereas monthly abundance of B.gobiensis and M.kraatzi alashanica was positively correlated with monthly mean precipitation;and(4)the cover of Reaumuria soongarica(Pall.)Maxim.and Nitraria sphaerocarpa Maxim.had a positive influence on the number of tenebrionid beetles captured.In conclusion,monthly variation in precipitation significantly influences the community dynamic of tenebrionid beetles,with precipitation and shrub cover jointly determining the spatial distribution pattern of these beetles in the Gobi desert ecosystems.展开更多
Background The gut microbiota influences chicken health,welfare,and productivity.A diverse and balanced microbiota has been associated with improved growth,efficient feed utilisation,a well-developed immune system,dis...Background The gut microbiota influences chicken health,welfare,and productivity.A diverse and balanced microbiota has been associated with improved growth,efficient feed utilisation,a well-developed immune system,disease resistance,and stress tolerance in chickens.Previous studies on chicken gut microbiota have predominantly focused on broiler chickens and have usually been limited to one or two sections of the digestive system,under con-trolled research environments,and often sampled at a single time point.To extend these studies,this investigation examined the microbiota of commercially raised layer chickens across all major gut sections of the digestive system and with regular sampling from rearing to the end of production at 80 weeks.The aim was to build a detailed picture of microbiota development across the entire digestive system of layer chickens and study spatial and temporal dynamics.Results The taxonomic composition of gut microbiota differed significantly between birds in the rearing and pro-duction stages,indicating a shift after laying onset.Similar microbiota compositions were observed between proven-triculus and gizzard,as well as between jejunum and ileum,likely due to their anatomical proximity.Lactobacil-lus dominated the upper gut in pullets and the lower gut in older birds.The oesophagus had a high proportion of Proteobacteria,including opportunistic pathogens such as Gallibacterium.Relative abundance of Gallibacterium increased after peak production in multiple gut sections.Aeriscardovia was enriched in the late-lay phase compared to younger birds in multiple gut sections.Age influenced microbial richness and diversity in different organs.The upper gut showed decreased diversity over time,possibly influenced by dietary changes,while the lower gut,specifi-cally cecum and colon,displayed increased richness as birds matured.However,age-related changes were inconsist-ent across all organs,suggesting the influence of organ-specific factors in microbiota maturation.Conclusion Addressing a gap in previous research,this study explored the microbiota across all major gut sections and tracked their dynamics from rearing to the end of the production cycle in commercially raised layer chickens.This study provides a comprehensive understanding of microbiota structure and development which help to develop targeted strategies to optimise gut health and overall productivity in poultry production.展开更多
The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,t...The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,to reveal the relationship of associated microbiota to the fitness of oysters,temporal dynamics of microbiota in the gill,hemolymph,and hepatopancreas of C.gigas during April 2018-January 2019 were investigated by 16 S rRNA gene sequencing.The microbiota in C.gigas exhibited tissue heterogeneity,of which Spirochaetaceae was dominant in the gill and hemolymph while Mycoplasmataceae enriched in the hepatopancreas.Co-occurrence network demonstrated that the gill microbiota exhibited higher inter-taxon connectivity while the hemolymph microbiota had more modules.The richness(Chao 1 index)and diversity(Shannon index)of microbial community in each tissue showed no significant seasonal variations,except for the hepatopancreas having a higher richness in the autumn.Similarly,beta diversity analysis indicated a relatively stable microbiota in each tissue during the sampling period,showing relative abundance of the dominant taxa exhibiting temporal dynamics.Results indicate that the microbial community in C.gigas showed a tissue-specific stability with temporal dynamics in the composition,which might be essential for the tissue functioning and environmental adaption in oysters.This work provides a baseline microbiota in C.gigas and is helpful for the understanding of host-microbiota interaction in oysters.展开更多
Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scar...Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.展开更多
Urban green spaces(UGS)are relevant to city well-being,as recognized by the United Nations’Sustainable Development Goals(SDGs).However,few studies have studied the temporal use of UGS.This work assessed the seasonal,...Urban green spaces(UGS)are relevant to city well-being,as recognized by the United Nations’Sustainable Development Goals(SDGs).However,few studies have studied the temporal use of UGS.This work assessed the seasonal,weekly,and daily use of three urban green spaces(Vingis Park,Bernardino Garden,and Jomantas Park)in Vilnius(Lithuania).The study is based on an on-site observation-based survey,which recorded users’characteristics,activities,and weather conditions during summer and winter.The results showed that UGS’s seasonal,weekly,and daily use differed according to park and users’characteristics.Parks with a higher diversity of facilities had a high seasonal difference in the number of observed activities.User numbers were higher in the summer for activities with children,social activities,sports,and water activities than in the winter.Jomantas Park had the lowest variability in user characteristics.Weather variables were linked to changes in users’activities.Higher precipitation and lower temperature were associated with reducing the number of users and the diversity of registered activities.Most of the stationary activities were observed during summer.The diversity of the observed activities was associated with the available facilities rather than the park size.The distribution of stationary activities was spatially correlated with facility/equipment(benches,playgrounds,sports,and fitness equipment)and proximity to water features.The results of this study are relevant for UGS design,planning,and management.展开更多
Background: The Democratic Republic of Congo (DRC) has been facing outbreaks of VDPV since 2017. These wild poliovirus variants are responsible for poliomyelitis, which is in the process of eradication.. In the follow...Background: The Democratic Republic of Congo (DRC) has been facing outbreaks of VDPV since 2017. These wild poliovirus variants are responsible for poliomyelitis, which is in the process of eradication.. In the following lines, we try to show the evolution of VDPV cases across the country in order to understand their chronological dynamics and seasonal influence. Methods: We conducted a cross-sectional study of of VDPV notified in the DRC from 2018 to 2023. Maps of the spatial dynamics of VDPV cases were produced from attack rates with QGIS® (3.22.8). As for temporal dynamics, time series were decomposed and presented in the form of graphs showing the chronological evolution of VDPV cases and their seasonal trend, using R.4.0 software package. Results: A total of 1196 Cases of VDPV types 1, 2 and 3 were recorded in the biological confirmation databases of the INRB and the Expanded Program of Immunization during the study period across25 provinces. The eastern part of the country reporting the most cases. The general trend is upwards, with a peak in 2022 of 527 cases, whereas in 2021 there was a notable drop of 31 cases. Analysis of the temporal breakdown suggests a seasonal pattern, with peaks between the months of September and December, considered being rainy periods in some provinces. Conclusion: During the 6 years of our study (2018 - 2023) almost all the Health Zones were hit by VDPV epidemics. The eastern part was the most impacted. The seasonal component is well marked suggesting a rise in detection in the rainy season and during pivotal periods of climate change.展开更多
Based on the data of daily snowfall and weather phenomena of 11 national meteorological stations in Ulanqab City from 1991 to 2020,the spatial and temporal distribution characteristics of snowstorm were analyzed.The r...Based on the data of daily snowfall and weather phenomena of 11 national meteorological stations in Ulanqab City from 1991 to 2020,the spatial and temporal distribution characteristics of snowstorm were analyzed.The results show that the snowstorm in Ulanqab had obvious seasonal distribution characteristics,mainly happening in spring(March-May)and autumn(September-November).It also had obvious regional distribution in space,and the snowstorm center appeared in Chahar Right Wing Middle Banner and Jining District,namely the east side of the Yinshan Mountain.In the past 30 years,the amount of snowstorm in the whole year in Ulanqab showed a certain fluctuation trend,and the number of snowstorm days had shown an obvious upward trend since 2011.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distr...With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.展开更多
Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservati...Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.展开更多
The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis...The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis of equilibrium points without any reference to when or how to achieve it. In this paper, a dynamic gravity model was established based on the Maximum Entropy(MaxEnt) theory to estimate and monitor the interconnection intensity and dynamic characters of bilateral relations. In order to detect the determinants of interconnection intensity, a Geodetector method was applied to identify and evaluate the determinants of spatial networks in five dimensions. The empirical study clearly demonstrates a heterogeneous and non-circular spatial structure. The main driving forces of spatial-temporal evolution are foreign direct investment, tourism and railway infrastructure construction, while determinants in different sub-regions show obvious spatial differentiation. Southeast Asian countries are typically multi-island area where aviation infrastructure plays a more important role. North and Central Asian countries regard oil as a pillar industry where power and port facilities have a greater impact on the interconnection. While Western Asian countries are mostly influenced by the railway infrastructure, Eastern European countries already have relatively robust infrastructure where tariff policies provide a greater impetus.展开更多
Landslide warning models are important for mitigating landslide risks.The rainfall threshold model is the most widely used early warning model for predicting rainfall-triggered landslides.Recently,the rainfall thresho...Landslide warning models are important for mitigating landslide risks.The rainfall threshold model is the most widely used early warning model for predicting rainfall-triggered landslides.Recently,the rainfall threshold model has been coupled with the landslide susceptibility(LS)model to improve the accuracy of early warnings in the spatial domain.Existing coupled models,designed based on a matrix including predefined rainfall thresholds and susceptibility levels,have been used to determine the warning level.These predefined classifications inevitably have subjective rainfall thresholds and susceptibility levels,thus affecting the probability distribution information and eventually influencing the reliability of the produced early warning.In this paper,we propose a novel landslide warning model in which the temporal and spatial probabilities of landslides are coupled without predefining the classified levels.The temporal probability of landslides is obtained from the probability distribution of rainfall intensities that triggered historical landslides.The spatial probability of landslides is then obtained from the susceptibility probability distribution.A case study shows that the proposed probability-coupled model can successfully provide hourly warning results before the occurrence of a landslide.Although all three models successfully predicted the landslide,the probability-coupled model produced a warning zone comprising the fewest grid cells.Quantitatively,the probabilitycoupled model produced only 39 grid cells in the warning zone,while the rainfall threshold model and the matrix-coupled model produced warning zones including 81 and 49 grid cells,respectively.The proposed model is also applicable to other regions affected by rainfall-induced landslides and is thus expected to be useful for practical landslide risk management.展开更多
This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199...This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.展开更多
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ...This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.展开更多
In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were c...In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.展开更多
The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. ...The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. Three typical oceanographic factors aff ecting the squid habitat were investigated in this research, including sea surface temperature(SST), sea surface salinity(SSS) and sea surface height(SSH). We studied the CPUE-environment relationships for D. gigas using a spatially-lagged version of spatial autoregressive(SAR) model and a generalized additive model(GAM), with the latter for auxiliary and comparative purposes. The annual fishery centroids were distributed broadly in an area bounded by 79.5°–82.7°W and 11.9°–17.1°S, while the monthly fishery centroids were spatially close and lay in a smaller area bounded by 81.0°–81.2°W and 14.3°–15.4°S. Our results show that the preferred environmental ranges for D. gigas offshore Peru were 20.9°–21.9°C for SST, 35.16–35.32 for SSS and 27.2–31.5 cm for SSH in the areas bounded by 78°–80°W/82–84°W and 15°–18°S. Monthly spatial distributions during October to December were predicted using the calibrated GAM and SAR models and general similarities were found between the observed and predicted patterns for the nominal CPUE of D. gigas. The overall accuracies for the hotspots generated by the SAR model were much higher than those produced by the GAM model for all three months. Our results contribute to a better understanding of the spatiotemporal distributions of D. gigas off shore Peru, and off er a new SAR modeling method for advancing fishery science.展开更多
Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the ro...Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.展开更多
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t...In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.展开更多
Time is an important dimension for information in the geographical information system. Data, such as the historical state of target property space and related events causing the state to be changed, should be saved as...Time is an important dimension for information in the geographical information system. Data, such as the historical state of target property space and related events causing the state to be changed, should be saved as important files. This should be applied to property management. This paper designs and constructs a spatial temporal model, which is suitable to the property data changing management and spatial temporal query by analyzing the basic types and characteristics of property management spatial changing time and date. This model uses current and historical situational layers to organize and set up the relationship between current situation data and historical dates according to spatial temporal topological relations in property entities. By using Map Basic, housing property management and spatial query is realized.展开更多
基金supported by the National Natural Science Foundation of China(42171129)the second Tibetan Plateau Scientific Expedition and Research(2019QZKK0208)Yunnan University Talent Introduction Research Project(YJRC3201702)。
文摘Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).
基金funded by the National Natural Science Foundation of China(U23A2063)the Gansu Province Top-notch Leading Talents Project(E339040101)the National Natural Science Foundation of China(41771290,42377043,41773086).
文摘Tenebrionid beetles represent a crucial arthropod taxon in the Gobi desert ecosystems owing to their species richness and high biomass,both of which are essential for maintaining ecosystem health and stability.However,the spatiotemporal variations of tenebrionid beetle assemblages in the Gobi desert remain poorly understood.In this study,the monthly dynamics of tenebrionid beetles in the central part of the Hexi Corridor,Northwest China,a representative area of the Gobi desert ecosystems,were monitored using pitfall trapping during 2015-2020.The following results were showed:(1)monthly activity of tenebrionid beetles was observed from March to October,with monthly activity peaking in spring and summer,and monthly activity periods and peak of tenebrionid beetle species exhibited interspecific differences that varied from year to year;(2)spatial distribution of tenebrionid beetle community was influenced by structural factors.Specifically,at a spatial scale of 24.00 m,tenebrionid beetle community was strongly and positively correlated with the dominant species,with distinct spatial distribution patterns observed for Blaps gobiensis and Microdera kraatzi alashanica;(3)abundance of tenebrionid beetles was positively correlated with monthly mean precipitation and monthly mean temperature,whereas monthly abundance of B.gobiensis and M.kraatzi alashanica was positively correlated with monthly mean precipitation;and(4)the cover of Reaumuria soongarica(Pall.)Maxim.and Nitraria sphaerocarpa Maxim.had a positive influence on the number of tenebrionid beetles captured.In conclusion,monthly variation in precipitation significantly influences the community dynamic of tenebrionid beetles,with precipitation and shrub cover jointly determining the spatial distribution pattern of these beetles in the Gobi desert ecosystems.
基金This study was conducted in compliance with the standards stated in the eighth edition(2013)of the Australian Code for the Care and Use of Animals for Scientific Purposes,and the study was approved by the institutional Animal Ethics Committee of The University of Adelaide under the approval No.S-2018-015.
文摘Background The gut microbiota influences chicken health,welfare,and productivity.A diverse and balanced microbiota has been associated with improved growth,efficient feed utilisation,a well-developed immune system,disease resistance,and stress tolerance in chickens.Previous studies on chicken gut microbiota have predominantly focused on broiler chickens and have usually been limited to one or two sections of the digestive system,under con-trolled research environments,and often sampled at a single time point.To extend these studies,this investigation examined the microbiota of commercially raised layer chickens across all major gut sections of the digestive system and with regular sampling from rearing to the end of production at 80 weeks.The aim was to build a detailed picture of microbiota development across the entire digestive system of layer chickens and study spatial and temporal dynamics.Results The taxonomic composition of gut microbiota differed significantly between birds in the rearing and pro-duction stages,indicating a shift after laying onset.Similar microbiota compositions were observed between proven-triculus and gizzard,as well as between jejunum and ileum,likely due to their anatomical proximity.Lactobacil-lus dominated the upper gut in pullets and the lower gut in older birds.The oesophagus had a high proportion of Proteobacteria,including opportunistic pathogens such as Gallibacterium.Relative abundance of Gallibacterium increased after peak production in multiple gut sections.Aeriscardovia was enriched in the late-lay phase compared to younger birds in multiple gut sections.Age influenced microbial richness and diversity in different organs.The upper gut showed decreased diversity over time,possibly influenced by dietary changes,while the lower gut,specifi-cally cecum and colon,displayed increased richness as birds matured.However,age-related changes were inconsist-ent across all organs,suggesting the influence of organ-specific factors in microbiota maturation.Conclusion Addressing a gap in previous research,this study explored the microbiota across all major gut sections and tracked their dynamics from rearing to the end of the production cycle in commercially raised layer chickens.This study provides a comprehensive understanding of microbiota structure and development which help to develop targeted strategies to optimise gut health and overall productivity in poultry production.
基金Supported by the National Natural Science Foundation of China(No.41961124009)the Earmarked Fund for China Agriculture Research System(No.CARS-49)+1 种基金the fund for Outstanding Talents and Innovative Team of Agricultural Scientific Research from MARA,the Innovation Team of Aquaculture Environment Safety from Liaoning Province(No.LT202009)the Dalian High Level Talent Innovation Support Program(No.2022RG14)。
文摘The Pacific oyster Crassostrea gigas,one of the most exploited molluscs in the world,has suffered from massive mortality in recent decades,and the occurrence mechanisms have not been well characterized.In this study,to reveal the relationship of associated microbiota to the fitness of oysters,temporal dynamics of microbiota in the gill,hemolymph,and hepatopancreas of C.gigas during April 2018-January 2019 were investigated by 16 S rRNA gene sequencing.The microbiota in C.gigas exhibited tissue heterogeneity,of which Spirochaetaceae was dominant in the gill and hemolymph while Mycoplasmataceae enriched in the hepatopancreas.Co-occurrence network demonstrated that the gill microbiota exhibited higher inter-taxon connectivity while the hemolymph microbiota had more modules.The richness(Chao 1 index)and diversity(Shannon index)of microbial community in each tissue showed no significant seasonal variations,except for the hepatopancreas having a higher richness in the autumn.Similarly,beta diversity analysis indicated a relatively stable microbiota in each tissue during the sampling period,showing relative abundance of the dominant taxa exhibiting temporal dynamics.Results indicate that the microbial community in C.gigas showed a tissue-specific stability with temporal dynamics in the composition,which might be essential for the tissue functioning and environmental adaption in oysters.This work provides a baseline microbiota in C.gigas and is helpful for the understanding of host-microbiota interaction in oysters.
基金Supported by the International Partnership Program of Chinese Academy of Sciences(No.313GJHZ2022085 FN)the Dragon 5 Cooperation(No.59193)。
文摘Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.
基金the Portuguese Foundation for Science and Technology(FCT)through the PhD grant SFRH/BD/149710/2019,which is attributed to the first authorthe institutional scientific employment program-contract CEECINST/00077/2021 attributed to Carla Ferreira.
文摘Urban green spaces(UGS)are relevant to city well-being,as recognized by the United Nations’Sustainable Development Goals(SDGs).However,few studies have studied the temporal use of UGS.This work assessed the seasonal,weekly,and daily use of three urban green spaces(Vingis Park,Bernardino Garden,and Jomantas Park)in Vilnius(Lithuania).The study is based on an on-site observation-based survey,which recorded users’characteristics,activities,and weather conditions during summer and winter.The results showed that UGS’s seasonal,weekly,and daily use differed according to park and users’characteristics.Parks with a higher diversity of facilities had a high seasonal difference in the number of observed activities.User numbers were higher in the summer for activities with children,social activities,sports,and water activities than in the winter.Jomantas Park had the lowest variability in user characteristics.Weather variables were linked to changes in users’activities.Higher precipitation and lower temperature were associated with reducing the number of users and the diversity of registered activities.Most of the stationary activities were observed during summer.The diversity of the observed activities was associated with the available facilities rather than the park size.The distribution of stationary activities was spatially correlated with facility/equipment(benches,playgrounds,sports,and fitness equipment)and proximity to water features.The results of this study are relevant for UGS design,planning,and management.
文摘Background: The Democratic Republic of Congo (DRC) has been facing outbreaks of VDPV since 2017. These wild poliovirus variants are responsible for poliomyelitis, which is in the process of eradication.. In the following lines, we try to show the evolution of VDPV cases across the country in order to understand their chronological dynamics and seasonal influence. Methods: We conducted a cross-sectional study of of VDPV notified in the DRC from 2018 to 2023. Maps of the spatial dynamics of VDPV cases were produced from attack rates with QGIS® (3.22.8). As for temporal dynamics, time series were decomposed and presented in the form of graphs showing the chronological evolution of VDPV cases and their seasonal trend, using R.4.0 software package. Results: A total of 1196 Cases of VDPV types 1, 2 and 3 were recorded in the biological confirmation databases of the INRB and the Expanded Program of Immunization during the study period across25 provinces. The eastern part of the country reporting the most cases. The general trend is upwards, with a peak in 2022 of 527 cases, whereas in 2021 there was a notable drop of 31 cases. Analysis of the temporal breakdown suggests a seasonal pattern, with peaks between the months of September and December, considered being rainy periods in some provinces. Conclusion: During the 6 years of our study (2018 - 2023) almost all the Health Zones were hit by VDPV epidemics. The eastern part was the most impacted. The seasonal component is well marked suggesting a rise in detection in the rainy season and during pivotal periods of climate change.
文摘Based on the data of daily snowfall and weather phenomena of 11 national meteorological stations in Ulanqab City from 1991 to 2020,the spatial and temporal distribution characteristics of snowstorm were analyzed.The results show that the snowstorm in Ulanqab had obvious seasonal distribution characteristics,mainly happening in spring(March-May)and autumn(September-November).It also had obvious regional distribution in space,and the snowstorm center appeared in Chahar Right Wing Middle Banner and Jining District,namely the east side of the Yinshan Mountain.In the past 30 years,the amount of snowstorm in the whole year in Ulanqab showed a certain fluctuation trend,and the number of snowstorm days had shown an obvious upward trend since 2011.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
基金supported by the National Science and Technology Major Project of Water Pollution Control and Treatment(Grants No.2014ZX07405002,2012ZX07506007,2012ZX07506006,and 2012ZX07506002)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant No.KJ2016A868)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With a focus on the difficulty of quantitatively describing the degree of nonuniformity of temporal and spatial distributions of water resources, quantitative research was carried out on the temporal and spatial distribution characteristics of water resources in Guangdong Province from 1956 to 2000 based on a cloud model. The spatial variation of the temporal distribution characteristics and the temporal variation of the spatial distribution characteristics were both analyzed. In addition, the relationships between the numerical characteristics of the cloud model of temporal and spatial distributions of water resources and precipitation were also studied. The results show that, using a cloud model, it is possible to intuitively describe the temporal and spatial distribution characteristics of water resources in cloud images. Water resources in Guangdong Province and their temporal and spatial distribution characteristics are differentiated by their geographic locations. Downstream and coastal areas have a larger amount of water resources with greater uniformity and stronger stability in terms of temporal distribution. Regions with more precipitation possess larger amounts of water resources, and years with more precipitation show greater nonuniformity in the spatial distribution of water resources. The correlation between the nonuniformity of the temporal distribution and local precipitation is small, and no correlation is found between the stability of the nonuniformity of the temporal and spatial distributions of water resources and precipitation. The amount of water resources in Guangdong Province shows an increasing trend from 1956 to 2000, the nonuniformity of the spatial distribution of water resources declines, and the stability of the nonuniformity of the spatial distribution of water resources is enhanced.
文摘Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.
基金the auspices of A Category of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA20010101)。
文摘The spatial interaction model is an effective way to explore the geographical disparities inherent in the Belt and Road Initiative(BRI) by simulating spatial flows. The traditional gravity model implies the hypothesis of equilibrium points without any reference to when or how to achieve it. In this paper, a dynamic gravity model was established based on the Maximum Entropy(MaxEnt) theory to estimate and monitor the interconnection intensity and dynamic characters of bilateral relations. In order to detect the determinants of interconnection intensity, a Geodetector method was applied to identify and evaluate the determinants of spatial networks in five dimensions. The empirical study clearly demonstrates a heterogeneous and non-circular spatial structure. The main driving forces of spatial-temporal evolution are foreign direct investment, tourism and railway infrastructure construction, while determinants in different sub-regions show obvious spatial differentiation. Southeast Asian countries are typically multi-island area where aviation infrastructure plays a more important role. North and Central Asian countries regard oil as a pillar industry where power and port facilities have a greater impact on the interconnection. While Western Asian countries are mostly influenced by the railway infrastructure, Eastern European countries already have relatively robust infrastructure where tariff policies provide a greater impetus.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090301)the National Natural Science Foundation of China(Grant No.42041006 and 41927806)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102262901)。
文摘Landslide warning models are important for mitigating landslide risks.The rainfall threshold model is the most widely used early warning model for predicting rainfall-triggered landslides.Recently,the rainfall threshold model has been coupled with the landslide susceptibility(LS)model to improve the accuracy of early warnings in the spatial domain.Existing coupled models,designed based on a matrix including predefined rainfall thresholds and susceptibility levels,have been used to determine the warning level.These predefined classifications inevitably have subjective rainfall thresholds and susceptibility levels,thus affecting the probability distribution information and eventually influencing the reliability of the produced early warning.In this paper,we propose a novel landslide warning model in which the temporal and spatial probabilities of landslides are coupled without predefining the classified levels.The temporal probability of landslides is obtained from the probability distribution of rainfall intensities that triggered historical landslides.The spatial probability of landslides is then obtained from the susceptibility probability distribution.A case study shows that the proposed probability-coupled model can successfully provide hourly warning results before the occurrence of a landslide.Although all three models successfully predicted the landslide,the probability-coupled model produced a warning zone comprising the fewest grid cells.Quantitatively,the probabilitycoupled model produced only 39 grid cells in the warning zone,while the rainfall threshold model and the matrix-coupled model produced warning zones including 81 and 49 grid cells,respectively.The proposed model is also applicable to other regions affected by rainfall-induced landslides and is thus expected to be useful for practical landslide risk management.
基金Under the auspices of National Natural Science Foundation of China(No.40601073,41101192,41201571)Fundamental Research Funds for the Central Universities(No.2011PY112,2011QC041,2011QC091)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2011SC21)
文摘This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.
文摘This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.
基金Under the auspices of Major State Basic Research Development Program of China(No.2007CB714407)National Natural Science Foundation of China(No.40801070)Action Plan for West Development Program of Chinese Academy of Sciences(No.KZCX2-XB2-09)
文摘In this paper,a methodology for Leaf Area Index(LAI) estimating was proposed by assimilating remote sensed data into crop model based on temporal and spatial knowledge.Firstly,sensitive parameters of crop model were calibrated by Shuffled Complex Evolution method developed at the University of Arizona(SCE-UA) optimization method based on phenological information,which is called temporal knowledge.The calibrated crop model will be used as the forecast operator.Then,the Taylor′s mean value theorem was applied to extracting spatial information from the Moderate Resolution Imaging Spectroradiometer(MODIS) multi-scale data,which was used to calibrate the LAI inversion results by A two-layer Canopy Reflectance Model(ACRM) model.The calibrated LAI result was used as the observation operator.Finally,an Ensemble Kalman Filter(EnKF) was used to assimilate MODIS data into crop model.The results showed that the method could significantly improve the estimation accuracy of LAI and the simulated curves of LAI more conform to the crop growth situation closely comparing with MODIS LAI products.The root mean square error(RMSE) of LAI calculated by assimilation is 0.9185 which is reduced by 58.7% compared with that by simulation(0.3795),and before and after assimilation the mean error is reduced by 92.6% which is from 0.3563 to 0.0265.All these experiments indicated that the methodology proposed in this paper is reasonable and accurate for estimating crop LAI.
基金Supported by the National Natural Science Foundation of China(Nos.41406146,41476129)the Natural Science Foundation of Shanghai Municipality(No.13ZR1419300)the Shanghai Universities FirstClass Disciplines Project-Fisheries(A)
文摘The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. Three typical oceanographic factors aff ecting the squid habitat were investigated in this research, including sea surface temperature(SST), sea surface salinity(SSS) and sea surface height(SSH). We studied the CPUE-environment relationships for D. gigas using a spatially-lagged version of spatial autoregressive(SAR) model and a generalized additive model(GAM), with the latter for auxiliary and comparative purposes. The annual fishery centroids were distributed broadly in an area bounded by 79.5°–82.7°W and 11.9°–17.1°S, while the monthly fishery centroids were spatially close and lay in a smaller area bounded by 81.0°–81.2°W and 14.3°–15.4°S. Our results show that the preferred environmental ranges for D. gigas offshore Peru were 20.9°–21.9°C for SST, 35.16–35.32 for SSS and 27.2–31.5 cm for SSH in the areas bounded by 78°–80°W/82–84°W and 15°–18°S. Monthly spatial distributions during October to December were predicted using the calibrated GAM and SAR models and general similarities were found between the observed and predicted patterns for the nominal CPUE of D. gigas. The overall accuracies for the hotspots generated by the SAR model were much higher than those produced by the GAM model for all three months. Our results contribute to a better understanding of the spatiotemporal distributions of D. gigas off shore Peru, and off er a new SAR modeling method for advancing fishery science.
基金funded by National High Technology Research and Development Program of China (863 Program,2012AA092303)Project of Shanghai Science and Technology Innovation (12231203900)+2 种基金Industrialization Program of National Development and Reform Commission (2159999)National Science and Technology Support Program (2013BAD13B01)Shanghai Leading Academic Discipline Project
文摘Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.
文摘In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.
文摘Time is an important dimension for information in the geographical information system. Data, such as the historical state of target property space and related events causing the state to be changed, should be saved as important files. This should be applied to property management. This paper designs and constructs a spatial temporal model, which is suitable to the property data changing management and spatial temporal query by analyzing the basic types and characteristics of property management spatial changing time and date. This model uses current and historical situational layers to organize and set up the relationship between current situation data and historical dates according to spatial temporal topological relations in property entities. By using Map Basic, housing property management and spatial query is realized.