In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A...In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.展开更多
To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to...To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ...With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.展开更多
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental...Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.展开更多
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic...Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.展开更多
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet...As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.展开更多
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr...The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.展开更多
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi...The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.展开更多
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life d...Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively.展开更多
A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-...A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-dependent neuroprotective protein(ADNP),has been implicated in social and cognitive protection.However,the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood.In this study,ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice.The neuropathological basis was also explored using Golgi staining,morphological analysis,western blotting,electrophysiological analysis,and behavioral analysis.Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane.In adulthood,anterior cingulate cortex(ACC)neurons exposed to sevoflurane exhibited a decrease in dendrite number,total dendrite length,and spine density.Furthermore,the expression levels of Homer,PSD95,synaptophysin,and vglut2 were significantly reduced in the sevoflurane group.Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents(mEPSCs).Notably,davunetide significantly ameliorated the synaptic defects,social behavior deficits,and cognitive impairments induced by sevoflurane.Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca^(2+)activity via the Wnt/β-catenin signaling,resulting in decreased expression of synaptic proteins.Suppression of Wnt signaling was restored in the davunetide-treated group.Thus,ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics.This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.展开更多
Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance o...Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale.展开更多
BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood....BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts...Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.展开更多
In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of C...In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of Clinical Cases”that demonstrates the prevalence of behavioral disorders in preschool children.Therefore I am focused on parenting which is the most effective factor shown to affect the development and continuity of these behaviors.The management of child behavior problems is crucial.Children in early ages,especially preschoolers who are in the first 5 years of life,are influenced by dramatic changes in various aspects of development,such as social,emotional,and physical.Also,children experience many changes linked to different developmental tasks,such as discovering themselves,getting new friendships,and adapting to a new environment.In this period,parents have a critical role in supporting child development.If parents do not manage and overcome their child’s misbehavior,it could be transformed into psychosocial problems in adulthood.Parenting is the most powerful predictor in the social development of preschool children.Several studies have shown that to reduce the child’s emotional and behavioral problems,a warm relationship between parents and children is needed.In addition,recent studies have demonstrated significant relationships between family regulation factors and parenting,as well as with child behaviors.展开更多
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici...The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.展开更多
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ...The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.展开更多
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
基金This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403)the National Natural Science Foundation of China(Grant No.62032002)the 111 Project(Grant No.B21049).
文摘In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
基金supported by the Graduate Research and Innovation Project of Chongqing Normal University[Grant No.YKC23035],comprehensive evaluation,and driving factors of urban resilience in the Chengdu-Chongqing Economic Circle.
文摘To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金supported in part by the Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2022C01083 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/)Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2023C01217 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/).
文摘With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.
基金Supported by projects of the National Natural Science Foundation of China(Nos.92062216,41888101).
文摘Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.
基金the National Natural Science Foundation of China(No.61461027,61762059)the Provincial Science and Technology Program supported the Key Project of Natural Science Foundation of Gansu Province(No.22JR5RA226)。
文摘Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.
文摘As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.
基金Youth Fund of National Natural Science Foundation of China (42101353)the Ministry of Housing and Urban-Rural Development Science Plan Project (2022-R-063)Liaoning Social Science Planning Fund Project (L21BGL046)。
文摘The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.
基金partially supported by the National Key Research and Development Program of China(2020YFB2104001)。
文摘The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks.
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金supported,in part,by the National Nature Science Foundation of China under Grant Numbers 62272236,62376128in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401.
文摘Fall behavior is closely related to high mortality in the elderly,so fall detection becomes an important and urgent research area.However,the existing fall detection methods are difficult to be applied in daily life due to a large amount of calculation and poor detection accuracy.To solve the above problems,this paper proposes a dense spatial-temporal graph convolutional network based on lightweight OpenPose.Lightweight OpenPose uses MobileNet as a feature extraction network,and the prediction layer uses bottleneck-asymmetric structure,thus reducing the amount of the network.The bottleneck-asymmetrical structure compresses the number of input channels of feature maps by 1×1 convolution and replaces the 7×7 convolution structure with the asymmetric structure of 1×7 convolution,7×1 convolution,and 7×7 convolution in parallel.The spatial-temporal graph convolutional network divides the multi-layer convolution into dense blocks,and the convolutional layers in each dense block are connected,thus improving the feature transitivity,enhancing the network’s ability to extract features,thus improving the detection accuracy.Two representative datasets,Multiple Cameras Fall dataset(MCF),and Nanyang Technological University Red Green Blue+Depth Action Recognition dataset(NTU RGB+D),are selected for our experiments,among which NTU RGB+D has two evaluation benchmarks.The results show that the proposed model is superior to the current fall detection models.The accuracy of this network on the MCF dataset is 96.3%,and the accuracies on the two evaluation benchmarks of the NTU RGB+D dataset are 85.6%and 93.5%,respectively.
基金supported by the National Natural Science Foundation of China(82171170,81971076,82371277 to H.Z.,82101345 to L.R.L.)。
文摘A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-dependent neuroprotective protein(ADNP),has been implicated in social and cognitive protection.However,the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood.In this study,ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice.The neuropathological basis was also explored using Golgi staining,morphological analysis,western blotting,electrophysiological analysis,and behavioral analysis.Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane.In adulthood,anterior cingulate cortex(ACC)neurons exposed to sevoflurane exhibited a decrease in dendrite number,total dendrite length,and spine density.Furthermore,the expression levels of Homer,PSD95,synaptophysin,and vglut2 were significantly reduced in the sevoflurane group.Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents(mEPSCs).Notably,davunetide significantly ameliorated the synaptic defects,social behavior deficits,and cognitive impairments induced by sevoflurane.Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca^(2+)activity via the Wnt/β-catenin signaling,resulting in decreased expression of synaptic proteins.Suppression of Wnt signaling was restored in the davunetide-treated group.Thus,ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics.This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.
基金funded by the National Key R&D Program of China(Grant No.2021YFD1500200)National Natural Science Foundation of China(Grant No.42077149)+4 种基金China Postdoctoral Science Foundation(Grant No.2019M660782)National Science and Technology Basic Resources Survey Program of China(Grant No.2019FY101300)Doctoral research start-up fund project of Liaoning Provincial Department of Science and Technology(Grant No.2021-BS-136)China Scholarship Council(201908210132)Young Scientific and Technological Talents Project of Liaoning Province(Grant Nos.LSNQN201910 and LSNQN201914)。
文摘Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale.
基金Supported by the National Natural Science Foundation of China,No.81330068.
文摘BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by the National Natural Science Foundation of China(82171506 and 31872778)Discipline Innovative Engineering Plan(111 Program)of China(B13036)+3 种基金Key Laboratory Grant from Hunan Province(2016TP1006)Department of Science and Technology of Hunan Province(2021DK2001,Innovative Team Program 2019RS1010)Innovation-Driven Team Project from Central South University(2020CX016)Hunan Hundred Talents Program for Young Outstanding Scientists。
文摘Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.
基金the main study who are focused on parenting style and preschoolers'behavioral problems and give an opportunity to me to comment on this issue.
文摘In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of Clinical Cases”that demonstrates the prevalence of behavioral disorders in preschool children.Therefore I am focused on parenting which is the most effective factor shown to affect the development and continuity of these behaviors.The management of child behavior problems is crucial.Children in early ages,especially preschoolers who are in the first 5 years of life,are influenced by dramatic changes in various aspects of development,such as social,emotional,and physical.Also,children experience many changes linked to different developmental tasks,such as discovering themselves,getting new friendships,and adapting to a new environment.In this period,parents have a critical role in supporting child development.If parents do not manage and overcome their child’s misbehavior,it could be transformed into psychosocial problems in adulthood.Parenting is the most powerful predictor in the social development of preschool children.Several studies have shown that to reduce the child’s emotional and behavioral problems,a warm relationship between parents and children is needed.In addition,recent studies have demonstrated significant relationships between family regulation factors and parenting,as well as with child behaviors.
基金supported by the National Natural Science Foundation of China(No.92160301)the Industrial Technology Development Program,China(No.JCKY2021605 B026)。
文摘The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52088102,51879249)Fundamental Research Funds for the Central Universities(Grant No.202261055)。
文摘The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.