Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty ...Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.展开更多
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental...Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.展开更多
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.展开更多
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt...The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.展开更多
The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 gr...The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.展开更多
In this study, 30 sediment samples were collected from the lower reaches of the Shichuanhe River in Xi’an, Shaanxi Province, China, to test the distribution of heavy metal elements in this area and for an analysis of...In this study, 30 sediment samples were collected from the lower reaches of the Shichuanhe River in Xi’an, Shaanxi Province, China, to test the distribution of heavy metal elements in this area and for an analysis of the pollution levels of this area, hope to provide guidance on agricultural production activities in this region. The results show that the heavy metal elements in this area are mainly concentrated at the Qinghe River and Shichuanhe River confluences. Furthermore, the element contents are higher than that of the background levels of the continental crust(UCC) and close to the background levels of the soil from Shaanxi Province;the two most enriched elements are Cd and As, with contents of 0.79 and 22.7 mg·kg-1, respectively, and their contents are 3.8 and 1.72 times higher than that of the background values. Herein, the heavy metal pollution assessment methods applied indicated that Cd and As are the two most abundant pollutant elements in the area’s soils. As has a peak geo-accumulation index value of 3, and the pollution level is high, while Cd exhibits high potential ecological risks due to its high toxicity(potential risk index of 143) and an active fraction of more than 64%.In addition, a principal component analysis and hierarchical cluster analysis study showed that there are two sources of the heavy metals in this area. The Zn, As, Ni, Cu, Pb,and Cr are mainly from natural sources, and the Cd likely comes from a discharge of untreated agricultural wastewater in the region. The Cd which poses a high potential risk and mainly results from human activities, needs to be further monitored.展开更多
Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant...Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.展开更多
Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable opera...Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.展开更多
The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current in...The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.展开更多
Based on the background of achieving carbon peaking and carbon neutrality, the development and application of new high-power compressors, electric grid drilling RIGS and electric fracturing pump system provide new equ...Based on the background of achieving carbon peaking and carbon neutrality, the development and application of new high-power compressors, electric grid drilling RIGS and electric fracturing pump system provide new equipment support for the electric, green and intelligent development of shale gas fields in China. However, the harmonic pollution of shale gas grid becomes more serious due to the converter and frequency conversion device in the system, which easily causes harmonic resonance problem. Therefore, the harmonic resonance of shale gas grid is comprehensively analyzed and treated. Firstly, the working mechanism of compressor, electric drilling RIGS of the harmonic impedance model of electric fracturing pump system is established. Secondly, the main research methods of harmonic resonance analysis are introduced, and the basic principle of modal analysis is explained. Modal analysis method was used to analyze. Finally, harmonic resonance is suppressed. The results show that there may be multiple resonant frequency points in the distribution network changes, but these changes are relatively clear;if the original resonant frequency point of the resonant loop does not exist, the resonant frequency point disappears. The optimal configuration strategy of passive filter can effectively suppress harmonic resonance of distribution network in shale gas field.展开更多
The temporal-spatial distribution and seasonal variation of the precipitation acidity in Guangxi Province were statistically analyzed by means of the data from 2003 to 2008 in 10 Stations of Acid Rain Observation in t...The temporal-spatial distribution and seasonal variation of the precipitation acidity in Guangxi Province were statistically analyzed by means of the data from 2003 to 2008 in 10 Stations of Acid Rain Observation in the province and the data from 1996 to 2008 in two Monitoring Spots in Nanning and Baise,respectively.The results showed that annual average pH value of precipitation was <5.6 based on the analysis of the data from 10 Stations of Acid Rain Observation in the province,among which,the data from 5 stations indicated that annual average pH value of precipitation was <4.5.Thus,it can be thought that the serious acid rain had appeared in the province.There was an obvious seasonal variation in the extent of the acidity in precipitation and the acidity of precipitation in spring and winter was heavier than that in summer and autumn.展开更多
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
Based in 11 daily weather observation station data in Shanghai from 1971 to 2008,a careful research and analysis on the features of thunderstorms spatial and temporal distribution and thunderstorm movement in Shanghai...Based in 11 daily weather observation station data in Shanghai from 1971 to 2008,a careful research and analysis on the features of thunderstorms spatial and temporal distribution and thunderstorm movement in Shanghai was carried out by using the statistical software of SAS,the method of Mann-Kendall test and wavelets. The results showed that the average annual numbers of thunderstorms days were 26.1,and inter-annual thunderstorm variability was obvious,the annual number of thunderstorm days had a decreasing trend,its value of decreasing days was about-0.418 5 d/10 a. Mann-Kendall test showed that there was an abrupt change in 2000. The seasonal variation of thunderstorm in Shanghai was explicit. The period from March to September was the season when thunderstorm occurred most frequently,about 64.9% of the thunderstorms in a year took place in summer. The results from wavelets analysis showed that the variation cycle period of the annual number of thunderstorms days was about 3,5,12 and 20 years.展开更多
[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [...[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.展开更多
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
[Objective] This research was to study the correlation regional climatic characteristics and changing geographic distribution of Populus euphratica Oliv. (Salicaceae), as well as the adaption of Populus euphratica Oli...[Objective] This research was to study the correlation regional climatic characteristics and changing geographic distribution of Populus euphratica Oliv. (Salicaceae), as well as the adaption of Populus euphratica Oliv. to the climatic environment. [Method] The climatic characteristics, water source, groundwater and soil type in the distribution regions of Populus euphratica Oliv. and the effect of long-term human activities were comprehensively analyzed based an overview of Populus euphratica Oliv. and its distribution. [Result] Specific regional climatic characteristics and long term human activities are the principle determinants for the growth of Populus euphratica Oliv. The change of leaf shape is a distinct feature of Populus euphratica Oliv. in adapting to the climatic environment. Populus euphratica Oliv. withstands various environmental stresses by means of in vivo synthesis, transport and conversion of secondary phenolic metabolites. Effective protection and rehabilitation measures, and ecological water transport have obvious effect on the restoration and reconstruction of damaged ecological environment of Populus euphratica oasis. [Conclusion] This study is of great significance for the restoration of ecological environment in the arid inland regions, north-west China.展开更多
Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information abou...Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information about consumer demand. This information can be used by power utilities to forecast and reduce power cuts effectively. In this study, the direct method was used to create load profiles for residential feeders in Kinshasa. The results showed that load shedding on weekends results in significant financial losses and changes in people’s behavior. In November 2022 alone, load shedding was responsible for $ 23,4 08,984 and $ 2 80,9 07,808 for all year in losses. The study also found that the SAIDI index for the southern direction of the Kinshasa distribution network was 122.49 hours per feeder, on average. This means that each feeder experienced an average of 5 days of load shedding in November 2022. The SAIFI index was 20 interruptions per feeder, on average, and the CAIDI index was 6 hours, on average, before power was restored. This study also proposes ten strategies for the reduction of load shedding in the Kinshasa and central Africa power distribution network and for the improvement of its reliability, namely: Improved load forecasting, Improvement of the grid infrastructure, Scheduling of load shedding, Demand management programs, Energy efficiency initiatives, Distributed Generation, Automation and Monitoring of the Grid, Education and engagement of the consumer, Policy and regulatory assistance, and Updated load profile analysis.展开更多
Meteorological disasters are some of the most serious and costly natural disasters, which have larger effects on economic and social activity. Liuchun Lake is an ecotourism area in the southwest region of Zhejiang pro...Meteorological disasters are some of the most serious and costly natural disasters, which have larger effects on economic and social activity. Liuchun Lake is an ecotourism area in the southwest region of Zhejiang province, where also has experienced meteorological disasters including rainstorm and cold wave. Understanding the temporal-spatial characteristics of meteorological disasters is important for the local tourism and economic development. Based on the daily temperature and precipitation from 18 meteorological stations in the southwest of Zhejiang province during 1953-2022 and some statistical approaches, the temporal and spatial characteristics of meteorological disasters (Freezing, Rainstorm, Cold wave) are analyzed. The results indicate that 1) Rainstorm occurred frequently around the Liuchun lake, the frequency was about 8 times/a, it can also reach about 3 times/a in the other region. Freezing and cold wave (including strong cold wave and extremely cold wave) had the same spatial distribution as rainstorm, however, except for Liuchun lake, they occurred less than one time in the other regions;2) The trend of rainstorm had larger spatial difference, it increased in all the study area, but it increased more significantly around the study area than around Liuchun lake. Freezing was on the downtrend in the whole region, with 93.3% of the stations passed the 95% significant level. Cold wave also showed a declined trend, but it was insignificantly at most of the stations, only 33% of the stations passed the 90% significant level. Compared with cold wave, strong cold wave and extremely strong cold wave had weaker decline in all the regions. In general, from 1953 to 2022 rainstorm showed an increasing trend, it was the main meteorological disaster in the study area, cold wave displayed a decreasing trend, but it still occurred about 2 - 3 times/a in most regions.展开更多
Based on acid rain data from ten monitoring sites in Guangxi from 2003 to 2009,the temporal and spatial distribution characteristic of acid rain in Guangxi were analyzed by means of empirical orthogonal function resol...Based on acid rain data from ten monitoring sites in Guangxi from 2003 to 2009,the temporal and spatial distribution characteristic of acid rain in Guangxi were analyzed by means of empirical orthogonal function resolution(EOF).The results showed that there was fluctuating change of acid rain frequency in Guangxi,and acid rain pollution became severer in 2004-2008;acid rain frequency changed conformably in the whole region and it was obviously higher in eastern and northwestern Guangxi,while acid rain pollution became severe in western Guangxi;acid rain frequency varied out of phase between northeastern and southwestern Guangxi in an individual year.展开更多
A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinfo...A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.展开更多
基金funding support from the China Scholarship Council(CSC).
文摘Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems.
基金Supported by projects of the National Natural Science Foundation of China(Nos.92062216,41888101).
文摘Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.
基金supported by STI 2030-Major Projects 2021ZD0200400National Natural Science Foundation of China(62276233 and 62072405)Key Research Project of Zhejiang Province(2023C01048).
文摘Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines.
基金supported by the National Key Research and Development Program of China(No.2018YFA0702800)the National Natural Science Foundation of China(No.12072056)supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state.
基金Youth Fund of National Natural Science Foundation of China (42101353)the Ministry of Housing and Urban-Rural Development Science Plan Project (2022-R-063)Liaoning Social Science Planning Fund Project (L21BGL046)。
文摘The study of temporal and spatial variations of nitrate in groundwater under different soil nitrogen environments is helpful to the security of groundwater resources in agricultural areas.In this paper,based on 320 groups of soil and groundwater samples collected at the same time,geostatistical analysis and multiple regression analysis were comprehensively used to conduct the evaluation of nitrogen contents in both groundwater and soil.From May to August,as the nitrification of groundwater is dominant,the average concentration of nitrate nitrogen is 34.80 mg/L;The variation of soil ammonia nitrogen and nitrate nitrogen is moderate from May to July,and the variation coefficient decreased sharply and then increased in August.There is a high correlation between the nitrate nitrogen in groundwater and soil in July,and there is a high correlation between the nitrate nitrogen in groundwater and ammonium nitrogen in soil in August and nitrate nitrogen in soil in July.From May to August,the area of low groundwater nitrate nitrogen in 0-5 mg/L and 5-10 mg/L decreased from 10.97%to 0,and the proportion of high-value area(greater than 70 mg/L)increased from 21.19%to 27.29%.Nitrate nitrogen is the main factor affecting the quality of groundwater.The correlation analysis of nitrate nitrogen in groundwater,nitrate nitrogen in soil and ammonium nitrogen shows that they have a certain period of delay.The areas with high concentration of nitrate in groundwater are mainly concentrated in the western part of the study area,which has a high consistency with the high value areas of soil nitrate distribution from July to August,and a high difference with the spatial position of soil ammonia nitrogen distribution in August.
基金financially supported by the Key Project of Shaanxi Provincial Natural Science Basic Research Program(2023-JC-ZD-16).
文摘In this study, 30 sediment samples were collected from the lower reaches of the Shichuanhe River in Xi’an, Shaanxi Province, China, to test the distribution of heavy metal elements in this area and for an analysis of the pollution levels of this area, hope to provide guidance on agricultural production activities in this region. The results show that the heavy metal elements in this area are mainly concentrated at the Qinghe River and Shichuanhe River confluences. Furthermore, the element contents are higher than that of the background levels of the continental crust(UCC) and close to the background levels of the soil from Shaanxi Province;the two most enriched elements are Cd and As, with contents of 0.79 and 22.7 mg·kg-1, respectively, and their contents are 3.8 and 1.72 times higher than that of the background values. Herein, the heavy metal pollution assessment methods applied indicated that Cd and As are the two most abundant pollutant elements in the area’s soils. As has a peak geo-accumulation index value of 3, and the pollution level is high, while Cd exhibits high potential ecological risks due to its high toxicity(potential risk index of 143) and an active fraction of more than 64%.In addition, a principal component analysis and hierarchical cluster analysis study showed that there are two sources of the heavy metals in this area. The Zn, As, Ni, Cu, Pb,and Cr are mainly from natural sources, and the Cd likely comes from a discharge of untreated agricultural wastewater in the region. The Cd which poses a high potential risk and mainly results from human activities, needs to be further monitored.
文摘Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.
文摘Distribution networks denote important public infrastructure necessary for people’s livelihoods.However,extreme natural disasters,such as earthquakes,typhoons,and mudslides,severely threaten the safe and stable operation of distribution networks and power supplies needed for daily life.Therefore,considering the requirements for distribution network disaster prevention and mitigation,there is an urgent need for in-depth research on risk assessment methods of distribution networks under extreme natural disaster conditions.This paper accessesmultisource data,presents the data quality improvement methods of distribution networks,and conducts data-driven active fault diagnosis and disaster damage analysis and evaluation using data-driven theory.Furthermore,the paper realizes real-time,accurate access to distribution network disaster information.The proposed approach performs an accurate and rapid assessment of cross-sectional risk through case study.The minimal average annual outage time can be reduced to 3 h/a in the ring network through case study.The approach proposed in this paper can provide technical support to the further improvement of the ability of distribution networks to cope with extreme natural disasters.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(Grant No.SGSDJY00GPJS2100135).
文摘The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.
文摘Based on the background of achieving carbon peaking and carbon neutrality, the development and application of new high-power compressors, electric grid drilling RIGS and electric fracturing pump system provide new equipment support for the electric, green and intelligent development of shale gas fields in China. However, the harmonic pollution of shale gas grid becomes more serious due to the converter and frequency conversion device in the system, which easily causes harmonic resonance problem. Therefore, the harmonic resonance of shale gas grid is comprehensively analyzed and treated. Firstly, the working mechanism of compressor, electric drilling RIGS of the harmonic impedance model of electric fracturing pump system is established. Secondly, the main research methods of harmonic resonance analysis are introduced, and the basic principle of modal analysis is explained. Modal analysis method was used to analyze. Finally, harmonic resonance is suppressed. The results show that there may be multiple resonant frequency points in the distribution network changes, but these changes are relatively clear;if the original resonant frequency point of the resonant loop does not exist, the resonant frequency point disappears. The optimal configuration strategy of passive filter can effectively suppress harmonic resonance of distribution network in shale gas field.
文摘The temporal-spatial distribution and seasonal variation of the precipitation acidity in Guangxi Province were statistically analyzed by means of the data from 2003 to 2008 in 10 Stations of Acid Rain Observation in the province and the data from 1996 to 2008 in two Monitoring Spots in Nanning and Baise,respectively.The results showed that annual average pH value of precipitation was <5.6 based on the analysis of the data from 10 Stations of Acid Rain Observation in the province,among which,the data from 5 stations indicated that annual average pH value of precipitation was <4.5.Thus,it can be thought that the serious acid rain had appeared in the province.There was an obvious seasonal variation in the extent of the acidity in precipitation and the acidity of precipitation in spring and winter was heavier than that in summer and autumn.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.
基金Supported by Scientific Research Special Fund for Public Welfare Industry(GYHY 200806014)
文摘Based in 11 daily weather observation station data in Shanghai from 1971 to 2008,a careful research and analysis on the features of thunderstorms spatial and temporal distribution and thunderstorm movement in Shanghai was carried out by using the statistical software of SAS,the method of Mann-Kendall test and wavelets. The results showed that the average annual numbers of thunderstorms days were 26.1,and inter-annual thunderstorm variability was obvious,the annual number of thunderstorm days had a decreasing trend,its value of decreasing days was about-0.418 5 d/10 a. Mann-Kendall test showed that there was an abrupt change in 2000. The seasonal variation of thunderstorm in Shanghai was explicit. The period from March to September was the season when thunderstorm occurred most frequently,about 64.9% of the thunderstorms in a year took place in summer. The results from wavelets analysis showed that the variation cycle period of the annual number of thunderstorms days was about 3,5,12 and 20 years.
文摘[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
文摘[Objective] This research was to study the correlation regional climatic characteristics and changing geographic distribution of Populus euphratica Oliv. (Salicaceae), as well as the adaption of Populus euphratica Oliv. to the climatic environment. [Method] The climatic characteristics, water source, groundwater and soil type in the distribution regions of Populus euphratica Oliv. and the effect of long-term human activities were comprehensively analyzed based an overview of Populus euphratica Oliv. and its distribution. [Result] Specific regional climatic characteristics and long term human activities are the principle determinants for the growth of Populus euphratica Oliv. The change of leaf shape is a distinct feature of Populus euphratica Oliv. in adapting to the climatic environment. Populus euphratica Oliv. withstands various environmental stresses by means of in vivo synthesis, transport and conversion of secondary phenolic metabolites. Effective protection and rehabilitation measures, and ecological water transport have obvious effect on the restoration and reconstruction of damaged ecological environment of Populus euphratica oasis. [Conclusion] This study is of great significance for the restoration of ecological environment in the arid inland regions, north-west China.
文摘Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information about consumer demand. This information can be used by power utilities to forecast and reduce power cuts effectively. In this study, the direct method was used to create load profiles for residential feeders in Kinshasa. The results showed that load shedding on weekends results in significant financial losses and changes in people’s behavior. In November 2022 alone, load shedding was responsible for $ 23,4 08,984 and $ 2 80,9 07,808 for all year in losses. The study also found that the SAIDI index for the southern direction of the Kinshasa distribution network was 122.49 hours per feeder, on average. This means that each feeder experienced an average of 5 days of load shedding in November 2022. The SAIFI index was 20 interruptions per feeder, on average, and the CAIDI index was 6 hours, on average, before power was restored. This study also proposes ten strategies for the reduction of load shedding in the Kinshasa and central Africa power distribution network and for the improvement of its reliability, namely: Improved load forecasting, Improvement of the grid infrastructure, Scheduling of load shedding, Demand management programs, Energy efficiency initiatives, Distributed Generation, Automation and Monitoring of the Grid, Education and engagement of the consumer, Policy and regulatory assistance, and Updated load profile analysis.
文摘Meteorological disasters are some of the most serious and costly natural disasters, which have larger effects on economic and social activity. Liuchun Lake is an ecotourism area in the southwest region of Zhejiang province, where also has experienced meteorological disasters including rainstorm and cold wave. Understanding the temporal-spatial characteristics of meteorological disasters is important for the local tourism and economic development. Based on the daily temperature and precipitation from 18 meteorological stations in the southwest of Zhejiang province during 1953-2022 and some statistical approaches, the temporal and spatial characteristics of meteorological disasters (Freezing, Rainstorm, Cold wave) are analyzed. The results indicate that 1) Rainstorm occurred frequently around the Liuchun lake, the frequency was about 8 times/a, it can also reach about 3 times/a in the other region. Freezing and cold wave (including strong cold wave and extremely cold wave) had the same spatial distribution as rainstorm, however, except for Liuchun lake, they occurred less than one time in the other regions;2) The trend of rainstorm had larger spatial difference, it increased in all the study area, but it increased more significantly around the study area than around Liuchun lake. Freezing was on the downtrend in the whole region, with 93.3% of the stations passed the 95% significant level. Cold wave also showed a declined trend, but it was insignificantly at most of the stations, only 33% of the stations passed the 90% significant level. Compared with cold wave, strong cold wave and extremely strong cold wave had weaker decline in all the regions. In general, from 1953 to 2022 rainstorm showed an increasing trend, it was the main meteorological disaster in the study area, cold wave displayed a decreasing trend, but it still occurred about 2 - 3 times/a in most regions.
基金Supported by Scientific Research and Technological Development Planning Project of Guangxi Province(10123009-9)~~
文摘Based on acid rain data from ten monitoring sites in Guangxi from 2003 to 2009,the temporal and spatial distribution characteristic of acid rain in Guangxi were analyzed by means of empirical orthogonal function resolution(EOF).The results showed that there was fluctuating change of acid rain frequency in Guangxi,and acid rain pollution became severer in 2004-2008;acid rain frequency changed conformably in the whole region and it was obviously higher in eastern and northwestern Guangxi,while acid rain pollution became severe in western Guangxi;acid rain frequency varied out of phase between northeastern and southwestern Guangxi in an individual year.
基金Projects(51071122,51271147,51201134)supported by the National Natural Science Foundation of ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central UniversitiesProject(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘A three-dimensional cyclic symmetry finite element model of titanium-matrix composites(TMCs) ring was developed to investigate the stress distribution and burst failure. The effects of fiber volume fractions, reinforced areas, thermal residual stresses and two different temperatures on stress distribution were studied. The burst speed was obtained through analyzing the hoop tensile stresses under a series of rotating speeds. The results indicate that at the two different temperatures, the influences of fiber volume fractions and reinforced areas on stress level and distribution are different. Some proposals are provided for the structure design of the TMCs ring. With regard to thermal residual stresses, a larger reinforced area is an advisable choice for design of the ring at higher temperature.