Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resou...Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles. The time-series data set from the remote sensing MOLDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000-2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series. The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified. The Cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption. Awidespread decline of ET is observed only in cultivated areas. However, agricultural cultivation doesn't worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas. This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas.展开更多
Monitoring and evaluating the evolution of rocky desertification timely and studying the characteristics of soil erosion under different rainfall patterns are of great scientific significance for regional soil and wat...Monitoring and evaluating the evolution of rocky desertification timely and studying the characteristics of soil erosion under different rainfall patterns are of great scientific significance for regional soil and water conservation,rocky desertification control and ecological environment construction.Four periods of remote sensing image data from 2005 to 2020 were selected to study the evolution characteristics of rocky desertification and its impact on soil erosion in the controlled boundary area of Shibantang hydrological station of Yeji River Watershed,Guizhou Province,China.According to the 408 erosive rainfall events,the soil erosion under different rainfall patterns in the watershed was analyzed.The results showed that:erosive rainfall events in the study area were mainly pattern A,accounting for 57.4%of the total rainfall events;the second was pattern B,accounting for 28.9%of the total rainfall events;the rainfall pattern of C occurred occasionally.Among them,pattern A was the main rainfall pattern leading to soil and water loss and had the largest contribution rate to soil erosion in the watershed.From 2005 to 2020,the area of rocky desertification showed a decreasing trend,accounting for 72.2%from 87.9%.Spatially,rocky desertification has mainly concentrated in the middle south of the watershed since 2010,while the rocky desertification mainly concentrated in the middle and north before 2010.The effects of different grades of rocky desertification on soil erosion were different,and the soil erosion modulus in areas with the medium,severe and extremely severe rocky desertification was generally small.The soil erosion modulus estimated by the RUSLE(Revised Universal Soil Loss Equation)model was still much higher than that calculated by the data measured by the hydrological monitoring station.Therefore,the application of the RUSLE model in karst area needs to be further modified.These results can provide reference for rocky desertification control,soil erosion control and fragile ecosystem restoration in karst area.展开更多
The Tibetan Plateau(TP)in China has been experiencing severe water erosion because of climate warming.The rapid development of weather station network provides an opportunity to improve our understanding of rainfall e...The Tibetan Plateau(TP)in China has been experiencing severe water erosion because of climate warming.The rapid development of weather station network provides an opportunity to improve our understanding of rainfall erosivity in the TP.In this study,1-min precipitation data obtained from 1226 weather stations during 2018–2019 were used to estimate rainfall erosivity,and subsequently the spatial-temporal patterns of rainfall erosivity in the TP were identified.The mean annual erosive rainfall was 295 mm,which accounted for 53%of the annual rainfall.An average of 14 erosive events occurred yearly per weather station,with the erosive events in the wet season being more likely to extend beyond midnight.In these cases,the precipitation amounts of the erosive events were found to be higher than those of the daily precipitations,which may result in implicit bias as the daily precipitation data were used for estimating the rainfall erosivity.The mean annual rainfall erosivity in the TP was 528 MJ mm·ha^(-1)·h^(-1),with a broader range of 0–3402 MJ mm·ha^(-1)·h^(-1),indicating a significant spatial variability.Regions with the highest mean annual rainfall erosivity were located in the forest zones,followed by steppe and desert zones.Finally,the precipitation phase records obtained from 140 weather stations showed that snowfall events slightly impacted the accuracy of rainfall erosivity calculation,but attention should be paid to the erosion process of snowmelt in the inner part of the TP.These results can be used as the reference data for soil erosion prediction in normal precipitation years.展开更多
基金financial support from the National Key Research and Development Program of China(2017YFC1502404)the National Natural Science Foundation of China(41601562 and 41761014)+1 种基金the China Institute of Water Resources and Hydropower Research Team Construction and Talent Development Project(JZ0145B752017)the Research Project for Young Teachers of Fujian Province,China(JAT160085)
文摘Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles. The time-series data set from the remote sensing MOLDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000-2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series. The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified. The Cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption. Awidespread decline of ET is observed only in cultivated areas. However, agricultural cultivation doesn't worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas. This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas.
基金supported by National Natural Science Foundation of China(NO.32060372,NO.31760243)Guizhou Science and Technology Department(Qiankehe Zhicheng[2021]Yiban462)。
文摘Monitoring and evaluating the evolution of rocky desertification timely and studying the characteristics of soil erosion under different rainfall patterns are of great scientific significance for regional soil and water conservation,rocky desertification control and ecological environment construction.Four periods of remote sensing image data from 2005 to 2020 were selected to study the evolution characteristics of rocky desertification and its impact on soil erosion in the controlled boundary area of Shibantang hydrological station of Yeji River Watershed,Guizhou Province,China.According to the 408 erosive rainfall events,the soil erosion under different rainfall patterns in the watershed was analyzed.The results showed that:erosive rainfall events in the study area were mainly pattern A,accounting for 57.4%of the total rainfall events;the second was pattern B,accounting for 28.9%of the total rainfall events;the rainfall pattern of C occurred occasionally.Among them,pattern A was the main rainfall pattern leading to soil and water loss and had the largest contribution rate to soil erosion in the watershed.From 2005 to 2020,the area of rocky desertification showed a decreasing trend,accounting for 72.2%from 87.9%.Spatially,rocky desertification has mainly concentrated in the middle south of the watershed since 2010,while the rocky desertification mainly concentrated in the middle and north before 2010.The effects of different grades of rocky desertification on soil erosion were different,and the soil erosion modulus in areas with the medium,severe and extremely severe rocky desertification was generally small.The soil erosion modulus estimated by the RUSLE(Revised Universal Soil Loss Equation)model was still much higher than that calculated by the data measured by the hydrological monitoring station.Therefore,the application of the RUSLE model in karst area needs to be further modified.These results can provide reference for rocky desertification control,soil erosion control and fragile ecosystem restoration in karst area.
基金This research was jointly supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0307)the Strategic Priority Research Programof Chinese Academy of Sciences(Grant No.XDA20100300)+1 种基金the National Science Foundation for Young Scientists of China(Grant No.41905048)the Basic Research Special Project of the Chinese Academy of Meteorological Sciences(Grant No.2019Z008).
文摘The Tibetan Plateau(TP)in China has been experiencing severe water erosion because of climate warming.The rapid development of weather station network provides an opportunity to improve our understanding of rainfall erosivity in the TP.In this study,1-min precipitation data obtained from 1226 weather stations during 2018–2019 were used to estimate rainfall erosivity,and subsequently the spatial-temporal patterns of rainfall erosivity in the TP were identified.The mean annual erosive rainfall was 295 mm,which accounted for 53%of the annual rainfall.An average of 14 erosive events occurred yearly per weather station,with the erosive events in the wet season being more likely to extend beyond midnight.In these cases,the precipitation amounts of the erosive events were found to be higher than those of the daily precipitations,which may result in implicit bias as the daily precipitation data were used for estimating the rainfall erosivity.The mean annual rainfall erosivity in the TP was 528 MJ mm·ha^(-1)·h^(-1),with a broader range of 0–3402 MJ mm·ha^(-1)·h^(-1),indicating a significant spatial variability.Regions with the highest mean annual rainfall erosivity were located in the forest zones,followed by steppe and desert zones.Finally,the precipitation phase records obtained from 140 weather stations showed that snowfall events slightly impacted the accuracy of rainfall erosivity calculation,but attention should be paid to the erosion process of snowmelt in the inner part of the TP.These results can be used as the reference data for soil erosion prediction in normal precipitation years.