期刊文献+
共找到666篇文章
< 1 2 34 >
每页显示 20 50 100
Hyperspectral remote sensing identification of marine oil emulsions based on the fusion of spatial and spectral features
1
作者 Xinyue Huang Yi Ma +1 位作者 Zongchen Jiang Junfang Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期139-154,共16页
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio... Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection. 展开更多
关键词 oil emulsions IDENTIFICATION hyperspectral remote sensing feature selection convolutional neural network(CNN) spatial-temporal transferability
下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
2
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode Structural features Preparation technology Ultralow Pt loading
下载PDF
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:2
3
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
下载PDF
Spatial-temporal evolution of gas migration pathways in coal during shear loading 被引量:2
4
作者 Peng Shoujian Xu Jiang +2 位作者 Yin Guangzhi Liu Dong Wang Weizhong 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期769-773,共5页
Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal duri... Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal during shear loading was also researched.The results show that gas pressure can hasten crack growth at the shear fracture surface,can reduce the shear strength of gassy coal,and can accelerate the shear failure process.Shear failure in gassy coal exhibits five stages:the pre-crack stage;the stable crack growth stage;the unsteady crack growth stage;the fracture stage;and,finally,the friction crack stage.The shear breaking creates two kinds of crack,shear cracks and tensile cracks.Cracks first appear in the shear plane at both ends and then extend toward the center until a shear fracture surface forms.The direction of shear crack propagation diverges from the predetermined shear plane by an angle of about 5°-10°. 展开更多
关键词 COAL Gas MIGRATION PATHWAY SHEAR loading spatial-temporal EVOLUTION
下载PDF
Non-Intrusive Load Identification Model Based on 3D Spatial Feature and Convolutional Neural Network 被引量:1
5
作者 Jiangyong Liu Ning Liu +3 位作者 Huina Song Ximeng Liu Xingen Sun Dake Zhang 《Energy and Power Engineering》 2021年第4期30-40,共11页
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t... <div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div> 展开更多
关键词 Non-Intrusive load Identification Binary V-I Trajectory feature Three-Dimensional feature Convolutional Neural Network Deep Learning
下载PDF
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
6
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 load aggregation Regional large-scale Online recognition feature extraction method
下载PDF
Regional Evolution Features and Coordinated Development Strategies for Northeast China 被引量:2
7
作者 MEI Lin XU Xiaopo CHEN Mingxiu 《Chinese Geographical Science》 SCIE CSCD 2006年第4期378-382,共5页
Northeast China, as the most important production base of agriculture, forestry, and livestock-breeding as well as the old industrial base in the whole country, has been playin a key role in the construction and deve... Northeast China, as the most important production base of agriculture, forestry, and livestock-breeding as well as the old industrial base in the whole country, has been playin a key role in the construction and development of China's economy. However, after the policy of reform and open-up was taken in China. the economic development speed and efficiency ofthis area have turned to be evidently lower than those of coastal area and the national average level as well, which is so-called 'Northeast Phenomenon' and 'Neo-Northeast Phenomenon'. In terms of those phenomena, this paper firstly reviews the spatial and temporal features of the regional evolution of this area so as to unveil the profound forming causes of 'Northeast Phenomena' and 'Neo-Northeast Phenomena'. And then the paper makes a further exploration into the status quo of this region and its forming causes by analyzing its economy gross, industrial structure, product structure, regional eco-categories, etc. At the end of the paper, the authors put forward the basic coordinated development strategies for Northeast China. namely we can revitalize this area by means of adjustment of economic structure, regional coordination, planning urban and rural areas as a whole, institutional innovation, etc. 展开更多
关键词 regional evolution spatial-temporal feature coordinated development strategy Northeast China
下载PDF
Spatial-Temporal Characteristics of Regional Extreme Low Temperature Events in China during 1960-2009 被引量:1
8
作者 WANG Xiao-Juan GONG Zhi-Qiang +1 位作者 REN Fu-Min FENG Guo-Lin 《Advances in Climate Change Research》 SCIE 2012年第4期186-194,共9页
An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the l... An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the lowest temperatures of RELTE, together with the frequency distribution of the geometric latitude center, exhibit a double-peak feature. The RELTE frequently happen near the geometric area of 30°N and 42°N before the mid-1980s, but shifted afterwards to 30°N. During 1960-2009, the frequency~ intensity, and the maximum impacted area of RELTE show overall decreasing trends. Due to the contribution of RELTE, with long duratioh and large spatial range, which account for 10% of the total RELTE, there is a significant turning point in the late 1980s. A change to a much more steady state after the late 1990s is identified. In addition, the integrated indices of RELTE are classified and analyzed. 展开更多
关键词 regional extreme low temperature events spatial-temporal features turning point frequency distribution
下载PDF
Data-Driven Load Forecasting Using Machine Learning and Meteorological Data
9
作者 Aishah Alrashidi Ali Mustafa Qamar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1973-1988,共16页
Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be i... Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load. 展开更多
关键词 Electricity load forecasting meteorological data machine learning feature selection modeling real-world problems predictive analytics
下载PDF
Short-Term Mosques Load Forecast Using Machine Learning and Meteorological Data
10
作者 Musaed Alrashidi 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期371-387,共17页
The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these t... The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these types of buildings have minimal consideration in the ongoing energy efficiency applications.This is due to the unpredictability in the electrical consumption of the mosques affecting the stability of the distribution networks.Therefore,this study addresses this issue by developing a framework for a short-term electricity load forecast for a mosque load located in Riyadh,Saudi Arabia.In this study,and by harvesting the load consumption of the mosque and meteorological datasets,the performance of four forecasting algorithms is investigated,namely Artificial Neural Network and Support Vector Regression(SVR)based on three kernel functions:Radial Basis(RB),Polynomial,and Linear.In addition,this research work examines the impact of 13 different combinations of input attributes since selecting the optimal features has a major influence on yielding precise forecasting outcomes.For the mosque load,the(SVR-RB)with eleven features appeared to be the best forecasting model with the lowest forecasting errors metrics giving RMSE,nRMSE,MAE,and nMAE values of 4.207 kW,2.522%,2.938 kW,and 1.761%,respectively. 展开更多
关键词 Big data harvesting mosque load forecast data preprocessing machine learning optimal features selection
下载PDF
基于动态自适应图神经网络的电动汽车充电负荷预测 被引量:1
11
作者 张延宇 张智铭 +2 位作者 刘春阳 张西镚 周毅 《电力系统自动化》 EI CSCD 北大核心 2024年第7期86-93,共8页
电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自... 电动汽车充电站负荷波动的不确定性与长时间预测任务给提升充电负荷预测精度带来巨大的挑战。文中提出一种基于动态自适应图神经网络的电动汽车充电负荷预测算法。首先,构建了一个充电负荷信息时空关联特征提取层,将多头注意力机制与自适应相关图结合生成具有时空关联性的综合特征表达式,以捕获充电站负荷的波动性;然后,将提取的特征输入到时空卷积层,捕获时间和空间之间的耦合关系;最后,通过切比雪夫多项式图卷积与多尺度时间卷积提升模型耦合长时间序列之间的能力。以Palo Alto数据集为例,与现有方法相比,所提算法在4种波动情况下的平均预测误差大幅降低。 展开更多
关键词 电动汽车 负荷预测 时空关联特征 自适应图神经网络 注意力机制 时空卷积层
下载PDF
考虑动态时间锚点和典型特征约束的年日均负荷曲线预测
12
作者 李丹 贺帅 +3 位作者 颜伟 胡越 方泽仁 梁云嫣 《中国电力》 CSCD 北大核心 2024年第11期36-47,共12页
基于负荷趋势性、周期性和受日历特征影响的特点,考虑动态时间锚点和典型特征约束,实现年日均负荷曲线精确预测。首先,根据历史和预测年的日历关联关系建立动态时间锚点矩阵,结合标幺化和周期平滑处理后的历史年日均负荷形状因子曲线,提... 基于负荷趋势性、周期性和受日历特征影响的特点,考虑动态时间锚点和典型特征约束,实现年日均负荷曲线精确预测。首先,根据历史和预测年的日历关联关系建立动态时间锚点矩阵,结合标幺化和周期平滑处理后的历史年日均负荷形状因子曲线,提出DTA-Soft-DBA方法以获得预测年的日均负荷形状因子预测曲线;然后,进行反标幺化和反周期平滑处理,并结合电力电量特征预测值进行典型特征约束修正,获得年日均负荷预测曲线。基于某地区的算例结果表明,所提方法具有更高的预测精度,其结果与典型特征预测值相吻合,符合年内时序变化规律,能有效整合具有不同日历特征的历史样本时序共性规律。 展开更多
关键词 负荷预测 年日均负荷曲线 Soft-DBA 特征约束 日历特征
下载PDF
地震荷载作用下土体变形试验研究
13
作者 孟凡超 袁晓铭 《地震工程与工程振动》 CSCD 北大核心 2024年第3期157-163,共7页
为研究不规则地震荷载对土体变形特性的影响,对砂土试样开展了系统的动三轴试验。试验中分别对3种不同密度砂土试样施加了4条具有不同峰值的不规则地震应力时程及其循环次数为20周的等幅正弦荷载,以便开展对比研究。结果表明:在地震荷... 为研究不规则地震荷载对土体变形特性的影响,对砂土试样开展了系统的动三轴试验。试验中分别对3种不同密度砂土试样施加了4条具有不同峰值的不规则地震应力时程及其循环次数为20周的等幅正弦荷载,以便开展对比研究。结果表明:在地震荷载及其等幅循环荷载输入下,砂土试样的应变增长曲线差异显著,荷载类型及荷载波形是影响土单元应变时程发展特征的主要因素。考虑荷载不规则性得到的修正系数受荷载类型和砂土相对密实度的影响,不受输入荷载动应力幅值大小及砂土类型的影响。最后针对地震荷载下土单元变形的计算,给出了以常规的等幅三轴变形试验为依据的估算方法。 展开更多
关键词 地震荷载 变形特性 等幅往返荷载 修正系数 估算方法
下载PDF
基于计算智能的电力数据智能分析及应用研究
14
作者 白晶 周运斌 陈茜 《微型电脑应用》 2024年第7期245-248,共4页
为了提升智能电网负荷预测准确率,提出了一种基于深度学习的短期电力负荷预测模型。在长短时记忆网络和卷积神经网络基础上,构建混合CNN-LSTM预测模型结构。利用基于叠加卷积降噪自动编码器对电力数据进行特征提取,提出包含2个堆叠的LST... 为了提升智能电网负荷预测准确率,提出了一种基于深度学习的短期电力负荷预测模型。在长短时记忆网络和卷积神经网络基础上,构建混合CNN-LSTM预测模型结构。利用基于叠加卷积降噪自动编码器对电力数据进行特征提取,提出包含2个堆叠的LSTM层和1个线性输出层的负荷预测模型。24 h短期负荷预测结果表明,所提模型MAE、RMSE、MAPE和R2指标分别为232.08、292.19、0.0322、0.909,与XGBoost模型相比,性能分别提升74.8%、73.8%、70.8%和10.9%。 展开更多
关键词 智能电网 数据分析 负荷预测 特征提取
下载PDF
考虑多状态特征的非侵入式负荷识别方法
15
作者 王磊 马佳琪 +3 位作者 韩肖清 薛邵锴 杨蕊麟 白桦 《电网技术》 EI CSCD 北大核心 2024年第11期4720-4728,I0075,共10页
针对传统负荷识别存在无法准确区分含有多种运行状态的负荷识别问题,该文提出一种考虑负荷多状态特征的非侵入式负荷识别方法(non-intrusive load monitoring,NILM)。首先,利用VGG16卷积神经网络(visual geometry group 16neural networ... 针对传统负荷识别存在无法准确区分含有多种运行状态的负荷识别问题,该文提出一种考虑负荷多状态特征的非侵入式负荷识别方法(non-intrusive load monitoring,NILM)。首先,利用VGG16卷积神经网络(visual geometry group 16neural network,VGG16)对负荷的U-I轨迹进行初步分类。然后,采用最大相关最小冗余特征选择(max-relevance and min-redundancy,mRMR)算法,从未成功分类的负荷的各个工作状态中筛选出最优特征组合作为输入,通过支持向量机(support vector machines,SVM)算法进行二阶段识别,达到快速精细化识别多状态易混淆电器的分类效果。最后,利用Plaid数据集,对分别考虑单个状态和多个状态特征的识别效果进行对比分析。结果表明,文中所提方法可以有效区分易混淆的多状态电器,提高了识别准确性。 展开更多
关键词 非侵入式负荷识别 多状态电器 U-I轨迹特征 VGG16神经网络 SVM分类算法
下载PDF
法庭口译话语特征研究——以运动员孙杨CAS兴奋剂仲裁案口译为例
16
作者 刘春伟 曹轶玮 《语言教育》 2024年第1期105-113,共9页
孙杨兴奋剂仲裁案的听证会是具有重大国际影响的体育仲裁事件。过程中的口译质量问题一度成为口译和涉外法律研究的焦点话题。本文以法庭口译的质量要求为基准,以听证会的话轮和话语特征为研究对象,剖析法庭质证过程中的口译质量问题与... 孙杨兴奋剂仲裁案的听证会是具有重大国际影响的体育仲裁事件。过程中的口译质量问题一度成为口译和涉外法律研究的焦点话题。本文以法庭口译的质量要求为基准,以听证会的话轮和话语特征为研究对象,剖析法庭质证过程中的口译质量问题与存在原因。本研究旨在帮助译员熟悉范式、降低负荷、提供策略,促进法庭口译研究和人才培养,响应加速涉外法治人才培养的国家政策。 展开更多
关键词 法庭口译 话语特征 认知负荷
下载PDF
基于改进时间卷积网络的微电网超短期负荷预测
17
作者 王印松 吕率豪 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期255-263,共9页
为了提高微电网中用电负荷超短期预测的准确性,对时间卷积网络进行特征增强和注意力增强改进,将时间卷积网络中的一维因果膨胀卷积替换为二维卷积,同时利用时间模式注意力机制对时间卷积网络的隐藏层加权处理,提取负荷的多维特征,挖掘... 为了提高微电网中用电负荷超短期预测的准确性,对时间卷积网络进行特征增强和注意力增强改进,将时间卷积网络中的一维因果膨胀卷积替换为二维卷积,同时利用时间模式注意力机制对时间卷积网络的隐藏层加权处理,提取负荷的多维特征,挖掘序列中存在的潜藏联系。根据改进的方法建立预测模型并进行对比实验以验证方法的有效性,能够对用电负荷的不确定性进行有效的处理,拓宽特征向量的维度,有效捕捉负荷序列中与时间有关的特征,提高用电负荷的预测精度。 展开更多
关键词 负荷预测 微电网 卷积神经网络 特征增强 时间模式注意力机制
下载PDF
基于改进SVIT算法的非侵入式居民负荷监测方法
18
作者 卞海红 孙鑫 《电子设计工程》 2024年第16期87-91,96,共6页
针对居民侧异常用电负荷对用户用电安全有重大影响的问题,提出了一种基于改进SVIT的非侵入式负荷监测方法。该方法从用户总线处对居民家庭用电负荷投切时的V-I数据进行特征提取;对提取出的V-I轨迹特征进行二进制化处理并绘制成V-I轨迹图... 针对居民侧异常用电负荷对用户用电安全有重大影响的问题,提出了一种基于改进SVIT的非侵入式负荷监测方法。该方法从用户总线处对居民家庭用电负荷投切时的V-I数据进行特征提取;对提取出的V-I轨迹特征进行二进制化处理并绘制成V-I轨迹图像;利用改进的与三重注意力机制(Triplet Attention)相结合的SVIT的特征提取网络对其进行特征提取与映射;在此基础上,将处理后生成的新的特征向量进行聚类形成特征检索数据库,以识别出不在该特征检索数据库中的用电器V-I轨迹样本。通过利用PLAID数据集进行仿真实验并分析,验证了模型的有效性以及算法的优越性。 展开更多
关键词 非侵入式负荷监测 V-I轨迹特征 改进SVIT 三重注意力机制
下载PDF
基于机器学习技术的盾构荷载预测研究
19
作者 王峰 《辽宁工业大学学报(自然科学版)》 2024年第5期303-309,共7页
盾构荷载直接反映了盾构施工对周边环境的扰动情况,准确的盾构荷载预测可以保证周边环境的稳定和工程施工安全。鉴于传统的预测方法的精度较差的局限性,本文以北京某盾构工程为研究背景,提出了一种结合最大信息系数(MIC)、卷积神经网络(... 盾构荷载直接反映了盾构施工对周边环境的扰动情况,准确的盾构荷载预测可以保证周边环境的稳定和工程施工安全。鉴于传统的预测方法的精度较差的局限性,本文以北京某盾构工程为研究背景,提出了一种结合最大信息系数(MIC)、卷积神经网络(CNN)和时间卷积神经网络(TCN)的新型盾构荷载预测模型(MCT)。首先用MIC选取合适的输入参数,然后通过CNN模型挖掘荷载数据的空间特征,接着通过TCN模型提取荷载数据的时序特征,最后得出预测的结果。以实际工程的监测数据作为数据集,通过与现有的4种算法进行对比实验,结果表明本文提出的模型具有更好的预测能力,可以为以后类似的工程施工提供指导。 展开更多
关键词 盾构隧道 荷载预测 深度学习 特征选择 时空特征
下载PDF
融合CNN与BiLSTM模型的短期电能负荷预测
20
作者 杨桂松 高炳涛 何杏宇 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2253-2260,共8页
针对卷积神经网络(CNN)在捕捉预测序列间历史相关性方面的不足以及在变量复杂情况下出现的无法精准提取预测关键信息的问题,提出一种将双向长短期记忆网络(BiLSTM)与卷积神经网络结合的CNN-BiLSTM模型.首先,采用数据预处理方法保证数据... 针对卷积神经网络(CNN)在捕捉预测序列间历史相关性方面的不足以及在变量复杂情况下出现的无法精准提取预测关键信息的问题,提出一种将双向长短期记忆网络(BiLSTM)与卷积神经网络结合的CNN-BiLSTM模型.首先,采用数据预处理方法保证数据的正确性和完整性,并对数据进行分析以探究多变量之间的相关性;其次,通过CNN与L1正则化对多维输入特征进行特征筛选,选取与预测相关的重要性特征向量;最后,使用BiLSTM对CNN输出的关键特征信息进行保存,形成向量与预测序列,并通过分析时序特征的潜在特点,提取用户的内在消费模式.实验比较了该模型与其他时序模型在不同时间分辨率下的预测效果,实验结果表明,CNN-BiLSTM模型在不同的回望时间间隔下表现出了最佳的预测性能,能够实现更好的短期负荷预测. 展开更多
关键词 卷积神经网络 双向长短期记忆网络 特征筛选 CNN-BiLSTM模型 短期负荷预测
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部