The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph...The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.展开更多
The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is sprea...The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.展开更多
BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model ...BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model aims to guide the clinical management of pregnant women’s healthcare during pregnancy and support the healthy growth of newborns.METHODS A retrospective analysis was conducted on data from 1794 single full-term pregnant women who gave birth.Newborns were grouped based on birth weight:Those with birth weight<2.5 kg were classified as the low-weight group,and those with birth weight between 2.5 kg and 4 kg were included in the normal group.Multiple logistic regression analysis was used to identify the factors influencing the occurrence of full-term LBW.A risk prediction model was established based on the analysis results.The effectiveness of the model was analyzed using the Hosmer–Leme show test and receiver operating characteristic(ROC)curve to verify the accuracy of the predictions.RESULTS Among the 1794 pregnant women,there were 62 cases of neonatal weight<2.5 kg,resulting in an LBW incidence rate of 3.46%.The factors influencing full-term LBW included low maternal education level[odds ratio(OR)=1.416],fewer prenatal examinations(OR=2.907),insufficient weight gain during pregnancy(OR=3.695),irregular calcium supplementation during pregnancy(OR=1.756),and pregnancy hypertension syndrome(OR=2.192).The prediction model equation was obtained as follows:Logit(P)=0.348×maternal education level+1.067×number of prenatal examinations+1.307×insufficient weight gain during pregnancy+0.563×irregular calcium supplementation during pregnancy+0.785×pregnancy hypertension syndrome−29.164.The area under the ROC curve for this model was 0.853,with a sensitivity of 0.852 and a specificity of 0.821.The Hosmer–Leme show test yieldedχ^(2)=2.185,P=0.449,indicating a good fit.The overall accuracy of the clinical validation model was 81.67%.CONCLUSION The occurrence of full-term LBW is related to maternal education,the number of prenatal examinations,weight gain during pregnancy,calcium supplementation during pregnancy,and pregnancy-induced hypertension.The constructed predictive model can effectively predict the risk of full-term LBW.展开更多
This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfac...This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.展开更多
In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreami...In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.展开更多
Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model i...Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%.展开更多
Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research h...Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research has been conducted on this subject. In this study, we used generalized additive models(GAMs) to explore the influence of spatial-temporal and environmental factors on CPUEs of species aggregated, small yellow croaker(Larimichthys polyactis), and octopus(Octopus variabilis) based on logbooks investigations conducted at 4 stations in an alongshore area of Haizhou Bay from 2011 to 2012. The results showed that all CPUEs exhibited significant spatial-temporal differences at various scales. Aggregated CPUE was high when the sea surface temperature(SST) was 15-18℃ and 20-23℃, which was mainly determined by life history traits of the octopus and small yellow croaker(optimal SSTs 14-17℃ and 19-24℃, respectively). Chlorophyll-a concentration had significant influences on the aggregated, small yellow croaker and octopus CPUEs at optimal ranges of 3.8-6.2 mg m^(-3), 4.2-4.8 mg m^(-3) and 4.5-5.5 mg m^(-3), respectively. Flow through the net had positive relationships with CPUEs. The approximate logarithmic trends in regression curves had a critical point of 2.5 Mm^3 d^(-1), which was the dividing point that differentiated whether the major factor affecting CPUEs was the flow velocity or the fishery resource. Our results from this study will help guide fishery production and improve catch rate of set-net fishing in Haizhou Bay.展开更多
Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction...Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction of ground deformation in many countries is Knothe model.The model developed by Knothe belongs to the stochastic methods and is based on the influence function.In China a prediction method named Probability Integration Method(PIF)was established by Liu Baochen and Liao Guohua based on the stochastic medium theory.Modified version of that model allows to predict ground movements caused by mining operation in extremely complex technical and geological conditions.That model is commonly applied for coal,metal ore and salt deposits.The article presents several modifications of the mathematical model used in China and Poland.This model is very widespread in the world,therefore the generalizations proposed in the article can be implemented for the purposes of prediction surface deformations for various types of deposits in many countries.The presented generalizations were then tested on specific examples of coal mining,copper ore mining and rock salt deposit.The obtained results indicate high efficiency of methods based on the influence function in complex geological and mining conditions.展开更多
Sunshine duration has an important impact on agriculture.In order to study the temporal and spatial variation of sunshine duration in China under the background of climate change,based on the observation data of 2089 ...Sunshine duration has an important impact on agriculture.In order to study the temporal and spatial variation of sunshine duration in China under the background of climate change,based on the observation data of 2089 national meteorological stations during 1961-2017,trend analysis,mutation analysis,partial correlation analysis,and Mann-Kendall mutation analysis were used to analyze the temporal and spatial variation characteristics of sunshine duration in different regions of China,and the influence of main climatic factors and human activities.The results showed that:the sunshine duration in China showed a significant decreasing trend with a rate of-45.8 h/10 a,and the sunshine duration in 7 regions of Northwestern China,Northern China,Northeastern China,Center China,Eastern China,Southern China,and Southwestern China also showed a significant decrease.The spatial distribution of sunshine duration in China was characterized by"less in the south and more in the north",and the sunshine duration in the northern region was significantly higher than those in the southern region.The sunshine duration in Tibet,Qinghai,Gansu and west Inner Mongolia was higher,while it was obviously lower in Sichuan Basin.Through M-K mutation test analysis,it was found that sunshine duration in the whole country decreased significantly,but there was no mutation station,while mutation occurred at 1989 in Southwestern China,1983 in Northwestern China,1985 in Northeastern China.Seasonally,there was the highest sunshine duration in summer,followed by spring,autumn,and winter;the decline rate was also the highest in summer,followed by autumn,winter,and spring.Sunshine duration had a highly negative correlation with total cloud amount,visibility,haze,and precipitation,while had a strongly positive correlation with wind speed,and had no significant correlation with fog.展开更多
BACKGROUND Changes in China's fertility policy have led to a significant increase in older pregnant women.At present,there is a lack of analysis of influencing factors and research on predictive models for postpar...BACKGROUND Changes in China's fertility policy have led to a significant increase in older pregnant women.At present,there is a lack of analysis of influencing factors and research on predictive models for postpartum depression(PPD)in older pregnant women.AIM To analysis the influencing factors and the construction of predictive models for PPD in older pregnant women.METHODS By adopting a cross-sectional survey research design,239 older pregnant women(≥35 years old)who underwent obstetric examinations and gave birth at Suzhou Ninth People's Hospital from February 2022 to July 2023 were selected as the research subjects.When postpartum women of advanced maternal age came to the hospital for follow-up 42 d after birth,the Edinburgh PPD Scale(EPDS)was used to assess the presence of PPD symptoms.The women were divided into a PPD group and a no-PPD group.Two sets of data were collected for analysis,and a prediction model was constructed.The performance of the predictive model was evaluated using receiver operating characteristic(ROC)analysis and the Hosmer-Lemeshow goodness-of-fit test.RESULTS On the 42nd day after delivery,51 of 239 older pregnant women were evaluated with the EPDS scale and found to have depressive symptoms.The incidence rate was 21.34%(51/239).There were statistically significant differences between the PPD group and the no-PPD group in terms of education level(P=0.004),family relationships(P=0.001),pregnancy complications(P=0.019),and mother–infant separation after birth(P=0.002).Multivariate logistic regression analysis showed that a high school education and below,poor family relationships,pregnancy complications,and the separation of the mother and baby after birth were influencing factors for PPD in older pregnant women(P<0.05).Based on the influencing factors,the following model equation was developed:Logit(P)=0.729×education level+0.942×family relationship+1.137×pregnancy complications+1.285×separation of the mother and infant after birth-6.671.The area under the ROC curve of this prediction model was 0.873(95%CI:0.821-0.924),the sensitivity was 0.871,and the specificity was 0.815.The deviation between the value predicted by the model and the actual value through the Hosmer-Lemeshow goodness-of-fit test was not statistically significant(χ^(2)=2.749,P=0.638),indicating that the model did not show an overfitting phenomenon.CONCLUSION The risk of PPD among older pregnant women is influenced by educational level,family relationships,pregnancy complications,and the separation of the mother and baby after birth.A prediction model based on these factors can effectively predict the risk of PPD in older pregnant women.展开更多
In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to t...In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to the mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented. A numerical example illustrates that the method is available.展开更多
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround...Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.展开更多
This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivale...This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.展开更多
In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error vari...In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error variance, response variables and explanatory variables are derived, and the results are compared with those of case- deletion. Two examples are analyzed for illustration.展开更多
Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the a...Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area.However,information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited.This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method,and the path analysis was used to clarify the impact of temperature(T),precipitation(P),actual evapotranspiration(ETa),wind speed(W)and sunshine duration(S)on RH.The results demonstrated that climatic conditions in North Xinjiang(NXJ)was more humid than those in Hexi Corridor(HXC)and South Xinjiang(SXJ).RH had a less significant downtrend in NXJ than that in HXC,but an increasingly rising trend was observed in SXJ during the last five decades,implying that HXC and NXJ were under the process of droughts,while SXJ was getting wetter.There was a turning point for the trend of RH in Xinjiang,which occurred in 2000.Path analysis indicated that RH was negatively correlated to T,ETa,W and S,but it increased with increase of P.S,T and W had the greatest direct effects on RH in HXC,NXJ and SXJ,respectively.ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ,while T was the dominant factor in SXJ.展开更多
The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. ...The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. The functional relationship between the yellowing process of greenleaves and the development stages of spring wheat is established. Based on modelling and correctingfor the yellowing proass of green leaves affected by temperature and moisture, the synthetic modelfor simulating the dynaniical evolution of yellowed-leaf rate is constructed. The numerical experi-inents show that the result of the modelling is satisfactory.展开更多
How to fmd main influence factors of individuals to mobile service demand is investiga- ted. The empirical research is conducted in the sample of high-value customers in China mobile market. Based on Lewin behavior mo...How to fmd main influence factors of individuals to mobile service demand is investiga- ted. The empirical research is conducted in the sample of high-value customers in China mobile market. Based on Lewin behavior model, this pa- per establishes factors-matrix from personal and environmental dimensions. Relationships among multiple factors are tested in the structural equa- tion model and their impacts on customers' de- mands are elaborated. Findings indicate that opera- tional convenience and business brand image have significant effects on sample users' demands. Fur- thermore, annual income, gender, occupation, the needs of access to information and the needs of enriching and improving social relationships are al- so important factors for high-value users. The re- suits may provide further insights into mobile service demand and the model can be popularized to other behavior researches.展开更多
Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and eva...Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and eval- uation aspects related to SIA. We divide SIA models into two types: microscopic and macroscopic models. Microscopic models consider human interactions and the structure of the influence process, whereas macroscopic models consider the same transmission probability and identical influential power for all users. We analyze social influence methods including influence maximization, influence minimization, flow of influence, and individual influence. In social influence evaluation, influence evaluation metrics are introduced and social influence evaluation models are then analyzed. The objectives of this paper are to provide a comprehensive analysis, aid in understanding social behaviors, provide a theoretical basis for influencing public opinion, and unveil future research directions and potential applications.展开更多
基金support from the OpenGeoSys communitypartially funded by the Prime Minister Research Fellowship,Ministry of Education,Government of India with the project number SB21221901CEPMRF008347.
文摘The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.
基金supported by the National Social Science Fund of China (Grant No.23BGL270)。
文摘The virtuality and openness of online social platforms make networks a hotbed for the rapid propagation of various rumors.In order to block the outbreak of rumor,one of the most effective containment measures is spreading positive information to counterbalance the diffusion of rumor.The spreading mechanism of rumors and effective suppression strategies are significant and challenging research issues.Firstly,in order to simulate the dissemination of multiple types of information,we propose a competitive linear threshold model with state transition(CLTST)to describe the spreading process of rumor and anti-rumor in the same network.Subsequently,we put forward a community-based rumor blocking(CRB)algorithm based on influence maximization theory in social networks.Its crucial step is to identify a set of influential seeds that propagate anti-rumor information to other nodes,which includes community detection,selection of candidate anti-rumor seeds and generation of anti-rumor seed set.Under the CLTST model,the CRB algorithm has been compared with six state-of-the-art algorithms on nine online social networks to verify the performance.Experimental results show that the proposed model can better reflect the process of rumor propagation,and review the propagation mechanism of rumor and anti-rumor in online social networks.Moreover,the proposed CRB algorithm has better performance in weakening the rumor dissemination ability,which can select anti-rumor seeds in networks more accurately and achieve better performance in influence spread,sensitivity analysis,seeds distribution and running time.
文摘BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model aims to guide the clinical management of pregnant women’s healthcare during pregnancy and support the healthy growth of newborns.METHODS A retrospective analysis was conducted on data from 1794 single full-term pregnant women who gave birth.Newborns were grouped based on birth weight:Those with birth weight<2.5 kg were classified as the low-weight group,and those with birth weight between 2.5 kg and 4 kg were included in the normal group.Multiple logistic regression analysis was used to identify the factors influencing the occurrence of full-term LBW.A risk prediction model was established based on the analysis results.The effectiveness of the model was analyzed using the Hosmer–Leme show test and receiver operating characteristic(ROC)curve to verify the accuracy of the predictions.RESULTS Among the 1794 pregnant women,there were 62 cases of neonatal weight<2.5 kg,resulting in an LBW incidence rate of 3.46%.The factors influencing full-term LBW included low maternal education level[odds ratio(OR)=1.416],fewer prenatal examinations(OR=2.907),insufficient weight gain during pregnancy(OR=3.695),irregular calcium supplementation during pregnancy(OR=1.756),and pregnancy hypertension syndrome(OR=2.192).The prediction model equation was obtained as follows:Logit(P)=0.348×maternal education level+1.067×number of prenatal examinations+1.307×insufficient weight gain during pregnancy+0.563×irregular calcium supplementation during pregnancy+0.785×pregnancy hypertension syndrome−29.164.The area under the ROC curve for this model was 0.853,with a sensitivity of 0.852 and a specificity of 0.821.The Hosmer–Leme show test yieldedχ^(2)=2.185,P=0.449,indicating a good fit.The overall accuracy of the clinical validation model was 81.67%.CONCLUSION The occurrence of full-term LBW is related to maternal education,the number of prenatal examinations,weight gain during pregnancy,calcium supplementation during pregnancy,and pregnancy-induced hypertension.The constructed predictive model can effectively predict the risk of full-term LBW.
文摘This study explores the factors influencing metro passengers’ arrival volume in Wuhan, China, and Lagos, Nigeria, by examining weather, time of day, waiting time, travel behavior, arrival patterns, and metro satisfaction. It addresses a significant research gap in understanding metro passengers’ dynamics across cultural and geographical contexts. It employs questionnaires, field observations, and advanced data analysis techniques like association rule mining and neural network modeling. Key findings include a correlation between rainy weather, shorter waiting times, and higher arrival volumes. Neural network models showed high predictive accuracy, with waiting time, metro satisfaction, and weather being significant factors in Lagos Light Rail Blue Line Metro. In contrast, arrival patterns, weather, and time of day were more influential in Wuhan Metro Line 5. Results suggest that improving metro satisfaction and reducing waiting times could increase arrival volumes in Lagos Metro while adjusting schedules for weather and peak times could optimize flow in Wuhan Metro. These insights are valuable for transportation planning, passenger arrival volume management, and enhancing user experiences, potentially benefiting urban transportation sustainability and development goals.
文摘In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.
基金supported by the Program of Humanities and Social Science of Education Ministry of China(Grant No.20YJA630008)the Ningbo Natural Science Foundation of China(Grant No.202003N4142)+1 种基金the Natural Science Foundation of Zhejiang Province,China(Grant No.LY20G010004)the K.C.Wong Magna Fund in Ningbo University,China.
文摘Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%.
基金funded through the Special Fund for Agro-Scientific Research in the Public Interestthe Special Public Welfare Industry (agriculture) Research-Research and Demonstration of Fisheries Fishing Technology and Fishing Gear (No. 201203018)the National Natural Science Foundation of China (No. 31402350)
文摘Set-nets are common alongshore fishing gear used in Haizhou Bay, which rely on flow to catch fish. The catch per unit effort(CPUE) of set-net is affected by spatial-temporal and environmental factors but no research has been conducted on this subject. In this study, we used generalized additive models(GAMs) to explore the influence of spatial-temporal and environmental factors on CPUEs of species aggregated, small yellow croaker(Larimichthys polyactis), and octopus(Octopus variabilis) based on logbooks investigations conducted at 4 stations in an alongshore area of Haizhou Bay from 2011 to 2012. The results showed that all CPUEs exhibited significant spatial-temporal differences at various scales. Aggregated CPUE was high when the sea surface temperature(SST) was 15-18℃ and 20-23℃, which was mainly determined by life history traits of the octopus and small yellow croaker(optimal SSTs 14-17℃ and 19-24℃, respectively). Chlorophyll-a concentration had significant influences on the aggregated, small yellow croaker and octopus CPUEs at optimal ranges of 3.8-6.2 mg m^(-3), 4.2-4.8 mg m^(-3) and 4.5-5.5 mg m^(-3), respectively. Flow through the net had positive relationships with CPUEs. The approximate logarithmic trends in regression curves had a critical point of 2.5 Mm^3 d^(-1), which was the dividing point that differentiated whether the major factor affecting CPUEs was the flow velocity or the fishery resource. Our results from this study will help guide fishery production and improve catch rate of set-net fishing in Haizhou Bay.
基金This paper is funded by the national key project"The Belt and Road"talent recruitment project named:Comparison of Mining Subsidence Research in China and Poland(No.G2017001).Part of the research was financed from the Grant for Statutory Research AGH-University of Science and Technology in Krakow,Poland No.16.16.150.545.
文摘Mathematical modeling of surface deformations caused by underground mining operation is commonly carried out with use of empirical,numerical or stochastic models.One of the most frequently applied model for prediction of ground deformation in many countries is Knothe model.The model developed by Knothe belongs to the stochastic methods and is based on the influence function.In China a prediction method named Probability Integration Method(PIF)was established by Liu Baochen and Liao Guohua based on the stochastic medium theory.Modified version of that model allows to predict ground movements caused by mining operation in extremely complex technical and geological conditions.That model is commonly applied for coal,metal ore and salt deposits.The article presents several modifications of the mathematical model used in China and Poland.This model is very widespread in the world,therefore the generalizations proposed in the article can be implemented for the purposes of prediction surface deformations for various types of deposits in many countries.The presented generalizations were then tested on specific examples of coal mining,copper ore mining and rock salt deposit.The obtained results indicate high efficiency of methods based on the influence function in complex geological and mining conditions.
基金Supported by the National Key R&D Plan(2017YFD0300201,2020YFE 0201900).
文摘Sunshine duration has an important impact on agriculture.In order to study the temporal and spatial variation of sunshine duration in China under the background of climate change,based on the observation data of 2089 national meteorological stations during 1961-2017,trend analysis,mutation analysis,partial correlation analysis,and Mann-Kendall mutation analysis were used to analyze the temporal and spatial variation characteristics of sunshine duration in different regions of China,and the influence of main climatic factors and human activities.The results showed that:the sunshine duration in China showed a significant decreasing trend with a rate of-45.8 h/10 a,and the sunshine duration in 7 regions of Northwestern China,Northern China,Northeastern China,Center China,Eastern China,Southern China,and Southwestern China also showed a significant decrease.The spatial distribution of sunshine duration in China was characterized by"less in the south and more in the north",and the sunshine duration in the northern region was significantly higher than those in the southern region.The sunshine duration in Tibet,Qinghai,Gansu and west Inner Mongolia was higher,while it was obviously lower in Sichuan Basin.Through M-K mutation test analysis,it was found that sunshine duration in the whole country decreased significantly,but there was no mutation station,while mutation occurred at 1989 in Southwestern China,1983 in Northwestern China,1985 in Northeastern China.Seasonally,there was the highest sunshine duration in summer,followed by spring,autumn,and winter;the decline rate was also the highest in summer,followed by autumn,winter,and spring.Sunshine duration had a highly negative correlation with total cloud amount,visibility,haze,and precipitation,while had a strongly positive correlation with wind speed,and had no significant correlation with fog.
基金This study was reviewed and approved by the Ethics Committee of Suzhou Ninth People's Hospital.
文摘BACKGROUND Changes in China's fertility policy have led to a significant increase in older pregnant women.At present,there is a lack of analysis of influencing factors and research on predictive models for postpartum depression(PPD)in older pregnant women.AIM To analysis the influencing factors and the construction of predictive models for PPD in older pregnant women.METHODS By adopting a cross-sectional survey research design,239 older pregnant women(≥35 years old)who underwent obstetric examinations and gave birth at Suzhou Ninth People's Hospital from February 2022 to July 2023 were selected as the research subjects.When postpartum women of advanced maternal age came to the hospital for follow-up 42 d after birth,the Edinburgh PPD Scale(EPDS)was used to assess the presence of PPD symptoms.The women were divided into a PPD group and a no-PPD group.Two sets of data were collected for analysis,and a prediction model was constructed.The performance of the predictive model was evaluated using receiver operating characteristic(ROC)analysis and the Hosmer-Lemeshow goodness-of-fit test.RESULTS On the 42nd day after delivery,51 of 239 older pregnant women were evaluated with the EPDS scale and found to have depressive symptoms.The incidence rate was 21.34%(51/239).There were statistically significant differences between the PPD group and the no-PPD group in terms of education level(P=0.004),family relationships(P=0.001),pregnancy complications(P=0.019),and mother–infant separation after birth(P=0.002).Multivariate logistic regression analysis showed that a high school education and below,poor family relationships,pregnancy complications,and the separation of the mother and baby after birth were influencing factors for PPD in older pregnant women(P<0.05).Based on the influencing factors,the following model equation was developed:Logit(P)=0.729×education level+0.942×family relationship+1.137×pregnancy complications+1.285×separation of the mother and infant after birth-6.671.The area under the ROC curve of this prediction model was 0.873(95%CI:0.821-0.924),the sensitivity was 0.871,and the specificity was 0.815.The deviation between the value predicted by the model and the actual value through the Hosmer-Lemeshow goodness-of-fit test was not statistically significant(χ^(2)=2.749,P=0.638),indicating that the model did not show an overfitting phenomenon.CONCLUSION The risk of PPD among older pregnant women is influenced by educational level,family relationships,pregnancy complications,and the separation of the mother and baby after birth.A prediction model based on these factors can effectively predict the risk of PPD in older pregnant women.
基金The research project supported by NSFC(1 9631 0 4 0 ) and NSFJ
文摘In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to the mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented. A numerical example illustrates that the method is available.
基金supported by the National Key Research and Development Program of China(2018AAA0101005,2018AAA0102404)the Program of the Huawei Technologies Co.Ltd.(FA2018111061SOW12)+1 种基金the National Natural Science Foundation of China(61773054)the Youth Research Fund of the State Key Laboratory of Complex Systems Management and Control(20190213)。
文摘Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.
文摘This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.
文摘In this article, authors introduce a method to assess local influence of obser- vations on the parameter estimates and prediction in multivariate regression model. The diagnostics under the perturbations of error variance, response variables and explanatory variables are derived, and the results are compared with those of case- deletion. Two examples are analyzed for illustration.
基金This study was supported by the National Natural Science Foundation of China(U1703241)the Key International Cooperation Project of Chinese Academy of Sciences(121311KYSB20160005)the Open Project of Xinjiang Uygur Autonomous Region Key Laboratory of China(2017D04010).
文摘Playing an important role in global warming and plant growth,relative humidity(RH)has profound impacts on production and living,and can be used as an integrated indicator for evaluating the wet-dry conditions in the arid and semi-arid area.However,information on the spatial-temporal variation and the influencing factors of RH in these regions is still limited.This study attempted to use daily meteorological data during 1966–2017 to reveal the spatial-temporal characteristics of RH in the arid region of Northwest China through rotated empirical orthogonal function and statistical analysis method,and the path analysis was used to clarify the impact of temperature(T),precipitation(P),actual evapotranspiration(ETa),wind speed(W)and sunshine duration(S)on RH.The results demonstrated that climatic conditions in North Xinjiang(NXJ)was more humid than those in Hexi Corridor(HXC)and South Xinjiang(SXJ).RH had a less significant downtrend in NXJ than that in HXC,but an increasingly rising trend was observed in SXJ during the last five decades,implying that HXC and NXJ were under the process of droughts,while SXJ was getting wetter.There was a turning point for the trend of RH in Xinjiang,which occurred in 2000.Path analysis indicated that RH was negatively correlated to T,ETa,W and S,but it increased with increase of P.S,T and W had the greatest direct effects on RH in HXC,NXJ and SXJ,respectively.ETa was the factor which had the greatest indirect effect on RH in HXC and NXJ,while T was the dominant factor in SXJ.
文摘The yellowed-leaf rate is one of the important variables in simulation models for thegrowth of spring wheat. Based on the field experiments (1985-1988), the evolution of yellowed-leafrate of spring wheat is analyzed. The functional relationship between the yellowing process of greenleaves and the development stages of spring wheat is established. Based on modelling and correctingfor the yellowing proass of green leaves affected by temperature and moisture, the synthetic modelfor simulating the dynaniical evolution of yellowed-leaf rate is constructed. The numerical experi-inents show that the result of the modelling is satisfactory.
基金supported by the Hunan Province Soft SciencesPlan under Grant No. 2009ZK2001
文摘How to fmd main influence factors of individuals to mobile service demand is investiga- ted. The empirical research is conducted in the sample of high-value customers in China mobile market. Based on Lewin behavior model, this pa- per establishes factors-matrix from personal and environmental dimensions. Relationships among multiple factors are tested in the structural equa- tion model and their impacts on customers' de- mands are elaborated. Findings indicate that opera- tional convenience and business brand image have significant effects on sample users' demands. Fur- thermore, annual income, gender, occupation, the needs of access to information and the needs of enriching and improving social relationships are al- so important factors for high-value users. The re- suits may provide further insights into mobile service demand and the model can be popularized to other behavior researches.
文摘Social influence analysis (SIA) is a vast research field that has attracted research interest in many areas. In this paper, we present a survey of representative and state-of-the-art work in models, methods, and eval- uation aspects related to SIA. We divide SIA models into two types: microscopic and macroscopic models. Microscopic models consider human interactions and the structure of the influence process, whereas macroscopic models consider the same transmission probability and identical influential power for all users. We analyze social influence methods including influence maximization, influence minimization, flow of influence, and individual influence. In social influence evaluation, influence evaluation metrics are introduced and social influence evaluation models are then analyzed. The objectives of this paper are to provide a comprehensive analysis, aid in understanding social behaviors, provide a theoretical basis for influencing public opinion, and unveil future research directions and potential applications.