Drought events have become more frequent and intense over East Asia in recent decades,leading to huge socioeconomic impacts.Although the droughts have been studied extensively by cases or for individual regions,their ...Drought events have become more frequent and intense over East Asia in recent decades,leading to huge socioeconomic impacts.Although the droughts have been studied extensively by cases or for individual regions,their leading variability and associated causes remain unclear.Based on the Standardized Precipitation Evapotranspiration Index(SPEI)and ERA5 reanalysis product from 1979 to 2020,this study evealuates the severity of spring droughts in East Asia and investigates their variations and associated drivers.The results indicate that North China and Mongolia have experienced remarkable trends toward dryness during spring in recent decades,while southwestern China has witnessed an opposite trend toward wetness.The first Empirical Orthogonal Function mode of SPEI variability reveals a similar seesawing pattern,with more severe dryness in northwestern China,Mongolia,North China,South Korea,and Japan but increased wetness in Southwestern China and southeast Asia.Further investigation reveals that the anomalously dry(wet)surface in North(Southwestern)China is significantly associated with anomalously high(low)temperature,less(more)precipitation,and reduced(increased)soil moisture during the previous winter and early spring,regulated by an anomalous anticyclone(cyclone)and thus reduced(increased)water vapor convergence.The spring dry-wet pattern in East Asia is also linked to cold sea surface temperature anomalies in the central-eastern Pacific.The findings of this study have important implications for improving the prediction of spring drought events in East Asia.展开更多
With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from ...With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.展开更多
Negative air ions are natural components of the air we breathe Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, ...Negative air ions are natural components of the air we breathe Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, based on monthly monitoring in 15 parks from March 2009 to February 2010. In each park, sampling sites were selected in forests and open spaces. The annual variation in negative air ion concentrations (NAIC) showed peak values from June to October and minimum values from December to January. NAIC were highest in summer and autumn, intermediate in spring, and lowest in winter. During spring and summer, NAIC in open spaces were significantly higher in rural areas than those in suburban areas. However, there were no significant differences in NAIC at forest sites among seasons. For open spaces, total suspended particles (TSP) were the dominant determining factor of NAIC in sum- mer, and air temperature and air humidity were the dominant determining factors of NAIC in spring, which were tightly correlated with Shanghai's ongoing urbanization and its impacts on the environment. R is suggested that urbanization could induce variation in NAIC along the urban-rural gradient, but that may not change the temporal variation pattern. Fur- thermore, the effects of urbanization on NAIC were limited in non-vegetated or less-vegetated sites, such as open spaces, but not in well-vegetated areas, such as urban forests. Therefore, we suggest that urban greening, especially urban forest, has significant resistance to theeffect of urbanization on NAIC.展开更多
Urbanization is a comprehensive and complex socioeconomic phenomenon that plays an influential role in promoting global socioeconomic development.The Loess Plateau region is an important part of the China’s ecologica...Urbanization is a comprehensive and complex socioeconomic phenomenon that plays an influential role in promoting global socioeconomic development.The Loess Plateau region is an important part of the China’s ecological security pattern,and occupies an important position in the implementation of China’s new-type urbanization strategy and the realization of the urban dream.The characteristics of the staged changes and regional differentiation of urbanization in the area from 1990 to 2018 were studied with focus on regions and subregions by selecting 341 county-level administrative units on the Chinese Loess Plateau as the research area,and employing partition analysis and geographic detector methods.This revealed the formation mechanism of the spatial differentiation pattern of urbanization on the Loess Plateau.We found that the urbanization of the Loess Plateau,previously in a slow growth phase,entered the accelerated development phase,presenting a macro pattern of high rates of urbanization in central and eastern areas and low rates in western areas.The formation of the regional differentiation patterns of urbanization on the Loess Plateau were the combined results of natural geographical and socioeconomic factors.Among these factors,the interaction of any two factors had a stronger impact on regional urbanization patterns than a single factor,which was specifically manifested as nonlinear or bi-factor enhancement effects.The findings of this paper may provide a theoretical reference and scientific basis for the scientific promotion of healthy urbanization on the Chinese Loess Plateau and the ecologically fragile areas of developing countries around the world.展开更多
Dykes are a special kind of intrusive rocks which were formed by deep magma intruded into the existing brittle fractures in the crust.Dykes swarms in different tectonic environments are very significant to re-construc...Dykes are a special kind of intrusive rocks which were formed by deep magma intruded into the existing brittle fractures in the crust.Dykes swarms in different tectonic environments are very significant to re-construct the展开更多
The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes o...The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes of coastal landscape pattern under the influence of artificial dykes for the protection and management of coastal wetland.Our study aimed to reveal the quantitative characteristics of the coastal wetland landscape and its spatial-temporal dynamics under the influence of artificial dykes in the Yellow River delta(YRD).It was analyzed by the methods of the statistical analysis of landscape structure,five selected landscape indices and the changes of spatial centroids of three typical wetland types,including reed marshes,tidal fiats and aquaculture-salt fields.The results showed that:(1)Reduction of wetland area,especially the degradation of natural wetlands,had been the principal problem since the dykes were constructed in the YRD.The dykes created conditions for the development of artificial wetlands.However,the new born artificial wetlands were still less than the vanished natural wetlands.(2)Compared with the open area,the building of artificial dykes significantly speeded up the changes of landscape patterns and the aggravation of the landscape fragmentation in the closed area.(3)The changes of area-weighted centroids of three typical wetland landscapes were greatly affected by dykes,and the movement of the centroid of the aquaculture-salt field was very sensitive to the dykes constructed in the corresponding period.展开更多
Drought, which is one of the most frequently occurring severe hazards with long time scales and cov- ering wide geographical areas, is a natural phenomenon resulting in significant economic losses in agriculture and i...Drought, which is one of the most frequently occurring severe hazards with long time scales and cov- ering wide geographical areas, is a natural phenomenon resulting in significant economic losses in agriculture and industry. Drought is caused by an imbalance between the inputs of and the demand for water which is insufficient to meet the demands of human activities and the eco-environment. As a major arid and semi-arid area and an important agricultural region in Northwest China, North Xinjiang (NX) shows great vulnerability to drought. In this paper, the characteristics of inter-annual and seasonal drought were analyzed in terms of drought occurrence and drought coverage, by using the composite index of meteorological drought and the data of daily precipitation, air temperature, wind speed, relative humidity and sunshine duration from 38 meteorological stations during the period 1961-2012. Trend analysis, wavelet analysis and empirical orthogonal function were also applied to investigate change trend, period and regional characteristics, respectively. In NX, annual and seasonal drought occurrence and drought coverage all showed a decreasing trend that was most significant in winter (with rates of-0.26 month/10a and -15.46%, respectively), and drought occurrence in spring and summer were more frequent than that in autumn and winter. Spatially, drought was severe in eastern regions but mild in western regions of NX. Annual and seasonal drought occurrence at 38 meteorological stations displayed decreasing trends and were most significant in "Shi- hezi-Urumqi-Changji", which can help to alleviate severe drought hazards for local agricultural production and improve human livelihood. NX can be approximately classified into three sub-regions (severe drought region, moder- ate drought region and mild drought region), which were calculated from annual drought frequencies. The cross wavelet transform suggested that SOl (Southern Oscillation Index), AOI (Arctic Oscillation Index), AAOI (Antarctic Oscillation Index), PAOI (Pacific/North American Oscillation Index) and NAOI (North Atlantic Oscillation Index) have significant correlation with the variation of drought occurrence in NX. To prevent and mitigate the occurrence of drought disasters in NX, agricultural and government managers should pay more attention to those drought events that occur in spring and summer.展开更多
Drought acutely affects economic sectors, natural habitats and communities. Understanding the past spatial and temporal patterns of drought is crucial because it facilitates the forecasting of future drought occurrenc...Drought acutely affects economic sectors, natural habitats and communities. Understanding the past spatial and temporal patterns of drought is crucial because it facilitates the forecasting of future drought occurrences and informs decision-making processes for possible adaptive measures. This is especially important in view of a changing climate. This study employed the World Meteorological Organization(WMO)-recommended standardized precipitation index(SPI) to investigate the spatial and temporal patterns of drought in Zambia from 1960 to 2016. The relationship between the occurrence of consecutive dry days(CDD; consecutive days with less than 1 mm of precipitation) and SPI was also investigated. Horizontal wind vectors at 850 hPa during the core of the rainy season(December–February)were examined to ascertain the patterns of flow during years of extreme and severe drought; and these were contrasted with the patterns of flow in 2007, which was a generally wet year. Pressure vertical velocity was also investigated. Based on the gamma distribution, SPI successfully categorized extremely dry(with a SPI value less than or equal to –2.0) years over Zambia as 1992 and 2015, a severely dry(–1.9 to –1.5) year as 1995, moderately dry(–1.4 to –1.0) years as 1972, 1980, 1987, 1999 and 2005, and 26 near normal years(–0.9 to 0.9). The occurrence of CDD was found to be strongly negatively correlated with SPI with a coefficient of –0.6. Further results suggest that, during wet years, Zambia is influenced by a clockwise circulating low-pressure zone over the south-eastern Angola, a second such zone over the northern and eastern parts, and a third over the Indian Ocean. In stark contrast, years of drought were characterized by an anti-clockwise circulating high-pressure zone over the south-western parts of Zambia,constraining precipitation activities over the country. Further, wet years were characterized by negative pressure vertical velocity anomalies, signifying ascending motion; while drought years were dominated by positive anomalies, signifying descending motion, which suppresses precipitation. These patterns can be used to forecast drought over Zambia and aid in strategic planning to limit the potential damage of drought.展开更多
Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resou...Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles. The time-series data set from the remote sensing MOLDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000-2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series. The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified. The Cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption. Awidespread decline of ET is observed only in cultivated areas. However, agricultural cultivation doesn't worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas. This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas.展开更多
By using the one-point correlation method, calculations have been made of the northern early summer 500 hPa teleconnection patterns. Seven teleconnection patterns are revealed, namely, the Western Atlantic (WA), the E...By using the one-point correlation method, calculations have been made of the northern early summer 500 hPa teleconnection patterns. Seven teleconnection patterns are revealed, namely, the Western Atlantic (WA), the Eastern Atlantic (EA), the Eurasian (EU), the Bengal / Northern Pacific (BNP), the Western Pacific (WP), the East Asian / Pacific (EAP), and the Huanghe / East Asian (HEA) patterns. Their centers are determined and their yearly intensity indices (1951-1990) are calculated. On this basis the relationship between their interannual variations and the drought / flood in China is examined. It is noted that the EU, HEA and EAP wave trains are closely related to the drought / flood in China. The HEA and EAP patterns strongly influence the precipitation in eastern China. For example, the fierce floods experienced in 1991 early summer over China are related to the weak EAP and strong HEA patterns.展开更多
This study focused on identifying drought patterns particularly during the growing seasons along the coastal zone of Tanzania in order to facilitate the determination of drought impacts on forest Ecosystem. The growin...This study focused on identifying drought patterns particularly during the growing seasons along the coastal zone of Tanzania in order to facilitate the determination of drought impacts on forest Ecosystem. The growing seasons were March, April and May (MAM) referred as long growing season and October, November and December (OND) which is known as short growing season. The main data were precipitation from 16 weather stations covering the coastal zones of Tanzania. Standardized Precipitation Index (SPI) was used to establish meteorological drought patterns. The duration of records was between 34 and 59 years depending on the available data on the concerned stations. The SPI time series of 3 and 12 months showed that the coastal region of Tanzania experienced frequent drought conditions ranging from mild, moderate, severe and extreme droughts during both short and long growing seasons. It was found that the coastal zone of Tanzania experienced higher drought duration, severity and intensity with frequent extreme events after 2000 than before. Despite that Kisarawe area revealed low frequency of drought events (88%) than other study areas;it exhibited greater frequency of extreme droughts (46%) over the whole study areas. Higher drought duration (40 months) and severity (sum of SPI -36) were observed for precipitation data from Unguja Islands, while data from Julius Nyerere International Airport areas displayed higher drought intensity (SPI value of -1.9). Generally, Tanzania coastal zone was never completely without drought or anomalously wet conditions at any time scale during the period of record. The coastal zone was nearly entirely in drought periods especially the last decade after 2000. This suggests that vegetation in the coastal zone might have experienced the impacts of these droughts within the period. The magnitude of the impacts will be understood by tracking changes of biomass and forest cover along the coastal zone within the last decade from 2000 to 2011 in addition to the 1990/92 which experienced drought dominance for Pemba.展开更多
Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissi...Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.展开更多
Understanding the heterosis in multiple environments between different heterotic groups is of fundamental importance in successful maize breeding. A total of 737 hybrids derived from 41 maize inbreds were evaluated ov...Understanding the heterosis in multiple environments between different heterotic groups is of fundamental importance in successful maize breeding. A total of 737 hybrids derived from 41 maize inbreds were evaluated over two years, with the aim of assessing the genetic diversity and their performance between heterotic groups under drought-stressed(DS) and well-watered(WW) treatments. A total of 38 737 SNPs were employed to assess the genetic diversity. The genetic distance(GD) between the parents ranged from 0.05 to 0.74, and the 41 inbreds were classified into five heterotic groups. According to the hybrid performance(high yield and early maturity between heterotic groups), the heterosis and heterotic patterns of Iowa Stiff Stalk Synthetic(BSSS)×Non-Stiff Stalk(NSS), NSS×Sipingtou(SPT) and BSSS×SPT were identified to be useful options in China’s maize breeding. The relative importance of general and specific combining abilities(GCA and SCA) suggests the importance of the additive genetic effects for grain yield traits under the WW treatment, but the non-additive effects under the DS treatment. At least one of the parental lines with drought tolerance and a high GCA effect would be required to achieve the ideal hybrid performance under drought conditions. GD showed a positive correlation with yield and yield heterosis in within-group hybrids over a certain range of GD. The present investigation suggests that the heterosis is due to the combined accumulation of superior genes/alleles in parents and the optimal genetic distance between parents, and that yield heterosis under DS treatment was mainly determined by the non-additive effects.展开更多
[目的]揭示黄土高原典型区域百年尺度干旱演化特征,与地貌类型耦合阐明气象干旱的时空变化规律,进而为北洛河流域综合治理提供科技支撑。[方法]基于1915—2020年北洛河流域1 km分辨率的平均气温及降水数据,计算了年际标准化降水蒸散指数...[目的]揭示黄土高原典型区域百年尺度干旱演化特征,与地貌类型耦合阐明气象干旱的时空变化规律,进而为北洛河流域综合治理提供科技支撑。[方法]基于1915—2020年北洛河流域1 km分辨率的平均气温及降水数据,计算了年际标准化降水蒸散指数(SPEI),并结合Theil-Sen Median趋势分析、Mann-Kendall检验、小波分析、反距离权重插值(IDW)等方法,分析了流域内100余年不同地貌类型区的气象干旱时空演变特征。[结果](1)北洛河流域降水量及平均气温的空间分布差异较大,总体呈现东南向西北递减的特点;降水量多呈条带状分布,平均气温沿河道自上而下梯度增加,上游区(丘陵沟壑区)降水量相对较少,下游区(阶地平原区)平均气温相对偏高;(2) 1915—2020年北洛河流域SPEI-12震荡明显,干旱事件交替出现且弱减,下降速率为-0.04/10 a, 1942年,1990年和2010年为旱势转折年,并以1990年最为明显;周期变化大致可从1960年分为两个时期,之前以10 a, 17 a为主,其后为3 a, 7 a, 30 a左右,10 a和30 a周期在不同时期干旱变化中起主导作用;(3) SPEI-12的不显著下降趋势具有全域性且由东北向西南有增大趋势,表明北洛河流域总体呈弱旱化发展;(4)不同年代干旱事件发生频率差异较大,1990s重旱和特旱发生频率最高;2000s不同类型干旱事件发生的总频率最大,其中上游区(丘陵沟壑区)和下游区(阶地平原区)可达70%,而中游区(土石山林区和高原沟壑区)约为60%;(5)不同类型干旱空间分布存在异质性,轻旱发生频率有自南向北逐渐降低的趋势,中旱发生频率与之相反。总体来看,北洛河流域上游区(丘陵沟壑区)易发生中旱,下游区(阶地平原区)更易发生轻旱,重旱高发区在流域内零散分布,特旱的发生概率仅为1.69%~2.10%。[结论]全球变暖引发的旱化趋势在黄土高原地区的影响客观存在,北洛河流域不同地貌类型区气象干旱发生的高频类型略有差别,未来应提升中下游地区的抗旱减灾能力。展开更多
基金National Natural Science Foundation of China(42230603,42275020)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+3 种基金Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021001)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,MNR(QNHX2310)Future Earth Early-Career Fellowship of the Future Earth Global Secretariat Hub China。
文摘Drought events have become more frequent and intense over East Asia in recent decades,leading to huge socioeconomic impacts.Although the droughts have been studied extensively by cases or for individual regions,their leading variability and associated causes remain unclear.Based on the Standardized Precipitation Evapotranspiration Index(SPEI)and ERA5 reanalysis product from 1979 to 2020,this study evealuates the severity of spring droughts in East Asia and investigates their variations and associated drivers.The results indicate that North China and Mongolia have experienced remarkable trends toward dryness during spring in recent decades,while southwestern China has witnessed an opposite trend toward wetness.The first Empirical Orthogonal Function mode of SPEI variability reveals a similar seesawing pattern,with more severe dryness in northwestern China,Mongolia,North China,South Korea,and Japan but increased wetness in Southwestern China and southeast Asia.Further investigation reveals that the anomalously dry(wet)surface in North(Southwestern)China is significantly associated with anomalously high(low)temperature,less(more)precipitation,and reduced(increased)soil moisture during the previous winter and early spring,regulated by an anomalous anticyclone(cyclone)and thus reduced(increased)water vapor convergence.The spring dry-wet pattern in East Asia is also linked to cold sea surface temperature anomalies in the central-eastern Pacific.The findings of this study have important implications for improving the prediction of spring drought events in East Asia.
基金The Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ022)+2 种基金Special Fund for the Basic Scientific Research Expenses of the Chinese Academy of Meteorological Sciences(2021Z013)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ021)Major Projects of the Natural Science Foundation of China(91337000)。
文摘With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.
基金supported by the National Natural Science Foundation of China(No.40971041)
文摘Negative air ions are natural components of the air we breathe Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, based on monthly monitoring in 15 parks from March 2009 to February 2010. In each park, sampling sites were selected in forests and open spaces. The annual variation in negative air ion concentrations (NAIC) showed peak values from June to October and minimum values from December to January. NAIC were highest in summer and autumn, intermediate in spring, and lowest in winter. During spring and summer, NAIC in open spaces were significantly higher in rural areas than those in suburban areas. However, there were no significant differences in NAIC at forest sites among seasons. For open spaces, total suspended particles (TSP) were the dominant determining factor of NAIC in sum- mer, and air temperature and air humidity were the dominant determining factors of NAIC in spring, which were tightly correlated with Shanghai's ongoing urbanization and its impacts on the environment. R is suggested that urbanization could induce variation in NAIC along the urban-rural gradient, but that may not change the temporal variation pattern. Fur- thermore, the effects of urbanization on NAIC were limited in non-vegetated or less-vegetated sites, such as open spaces, but not in well-vegetated areas, such as urban forests. Therefore, we suggest that urban greening, especially urban forest, has significant resistance to theeffect of urbanization on NAIC.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFD1100101)the National Natural Science Foundation of China(Grant No.42001251)the Fundamental Research Funds for the Central Universities(Grant No.GK202103139)。
文摘Urbanization is a comprehensive and complex socioeconomic phenomenon that plays an influential role in promoting global socioeconomic development.The Loess Plateau region is an important part of the China’s ecological security pattern,and occupies an important position in the implementation of China’s new-type urbanization strategy and the realization of the urban dream.The characteristics of the staged changes and regional differentiation of urbanization in the area from 1990 to 2018 were studied with focus on regions and subregions by selecting 341 county-level administrative units on the Chinese Loess Plateau as the research area,and employing partition analysis and geographic detector methods.This revealed the formation mechanism of the spatial differentiation pattern of urbanization on the Loess Plateau.We found that the urbanization of the Loess Plateau,previously in a slow growth phase,entered the accelerated development phase,presenting a macro pattern of high rates of urbanization in central and eastern areas and low rates in western areas.The formation of the regional differentiation patterns of urbanization on the Loess Plateau were the combined results of natural geographical and socioeconomic factors.Among these factors,the interaction of any two factors had a stronger impact on regional urbanization patterns than a single factor,which was specifically manifested as nonlinear or bi-factor enhancement effects.The findings of this paper may provide a theoretical reference and scientific basis for the scientific promotion of healthy urbanization on the Chinese Loess Plateau and the ecologically fragile areas of developing countries around the world.
基金co-supported by National Natural Science Foundation of China (Project number 41502201)"Western Light" project of Chinese Academy of Sciences (XBBS201301)
文摘Dykes are a special kind of intrusive rocks which were formed by deep magma intruded into the existing brittle fractures in the crust.Dykes swarms in different tectonic environments are very significant to re-construct the
基金supported by the Open Fund for Field Stations of Institute of Geographic Sciences and Natural Resources Research,CAS and the Ocean Public Welfare Scientific Research Project(Grant No.201105020)
文摘The influence of anthropogenic activities,especially artificial dykes,on the coastal wetland landscape is now considered as a serious problem to the coastal ecosystem.It is important and necessary to analyze changes of coastal landscape pattern under the influence of artificial dykes for the protection and management of coastal wetland.Our study aimed to reveal the quantitative characteristics of the coastal wetland landscape and its spatial-temporal dynamics under the influence of artificial dykes in the Yellow River delta(YRD).It was analyzed by the methods of the statistical analysis of landscape structure,five selected landscape indices and the changes of spatial centroids of three typical wetland types,including reed marshes,tidal fiats and aquaculture-salt fields.The results showed that:(1)Reduction of wetland area,especially the degradation of natural wetlands,had been the principal problem since the dykes were constructed in the YRD.The dykes created conditions for the development of artificial wetlands.However,the new born artificial wetlands were still less than the vanished natural wetlands.(2)Compared with the open area,the building of artificial dykes significantly speeded up the changes of landscape patterns and the aggravation of the landscape fragmentation in the closed area.(3)The changes of area-weighted centroids of three typical wetland landscapes were greatly affected by dykes,and the movement of the centroid of the aquaculture-salt field was very sensitive to the dykes constructed in the corresponding period.
基金supported by International Science & Technology Cooperation Program of China (2010DFA92720)the Scientific Innovation Research Project for Graduate Students of XinjiangSoil Science Key Discipline Project of Xinjiang Uygur Autonomous Region
文摘Drought, which is one of the most frequently occurring severe hazards with long time scales and cov- ering wide geographical areas, is a natural phenomenon resulting in significant economic losses in agriculture and industry. Drought is caused by an imbalance between the inputs of and the demand for water which is insufficient to meet the demands of human activities and the eco-environment. As a major arid and semi-arid area and an important agricultural region in Northwest China, North Xinjiang (NX) shows great vulnerability to drought. In this paper, the characteristics of inter-annual and seasonal drought were analyzed in terms of drought occurrence and drought coverage, by using the composite index of meteorological drought and the data of daily precipitation, air temperature, wind speed, relative humidity and sunshine duration from 38 meteorological stations during the period 1961-2012. Trend analysis, wavelet analysis and empirical orthogonal function were also applied to investigate change trend, period and regional characteristics, respectively. In NX, annual and seasonal drought occurrence and drought coverage all showed a decreasing trend that was most significant in winter (with rates of-0.26 month/10a and -15.46%, respectively), and drought occurrence in spring and summer were more frequent than that in autumn and winter. Spatially, drought was severe in eastern regions but mild in western regions of NX. Annual and seasonal drought occurrence at 38 meteorological stations displayed decreasing trends and were most significant in "Shi- hezi-Urumqi-Changji", which can help to alleviate severe drought hazards for local agricultural production and improve human livelihood. NX can be approximately classified into three sub-regions (severe drought region, moder- ate drought region and mild drought region), which were calculated from annual drought frequencies. The cross wavelet transform suggested that SOl (Southern Oscillation Index), AOI (Arctic Oscillation Index), AAOI (Antarctic Oscillation Index), PAOI (Pacific/North American Oscillation Index) and NAOI (North Atlantic Oscillation Index) have significant correlation with the variation of drought occurrence in NX. To prevent and mitigate the occurrence of drought disasters in NX, agricultural and government managers should pay more attention to those drought events that occur in spring and summer.
基金on a PhD scholarship sponsored by the University of Edinburgh
文摘Drought acutely affects economic sectors, natural habitats and communities. Understanding the past spatial and temporal patterns of drought is crucial because it facilitates the forecasting of future drought occurrences and informs decision-making processes for possible adaptive measures. This is especially important in view of a changing climate. This study employed the World Meteorological Organization(WMO)-recommended standardized precipitation index(SPI) to investigate the spatial and temporal patterns of drought in Zambia from 1960 to 2016. The relationship between the occurrence of consecutive dry days(CDD; consecutive days with less than 1 mm of precipitation) and SPI was also investigated. Horizontal wind vectors at 850 hPa during the core of the rainy season(December–February)were examined to ascertain the patterns of flow during years of extreme and severe drought; and these were contrasted with the patterns of flow in 2007, which was a generally wet year. Pressure vertical velocity was also investigated. Based on the gamma distribution, SPI successfully categorized extremely dry(with a SPI value less than or equal to –2.0) years over Zambia as 1992 and 2015, a severely dry(–1.9 to –1.5) year as 1995, moderately dry(–1.4 to –1.0) years as 1972, 1980, 1987, 1999 and 2005, and 26 near normal years(–0.9 to 0.9). The occurrence of CDD was found to be strongly negatively correlated with SPI with a coefficient of –0.6. Further results suggest that, during wet years, Zambia is influenced by a clockwise circulating low-pressure zone over the south-eastern Angola, a second such zone over the northern and eastern parts, and a third over the Indian Ocean. In stark contrast, years of drought were characterized by an anti-clockwise circulating high-pressure zone over the south-western parts of Zambia,constraining precipitation activities over the country. Further, wet years were characterized by negative pressure vertical velocity anomalies, signifying ascending motion; while drought years were dominated by positive anomalies, signifying descending motion, which suppresses precipitation. These patterns can be used to forecast drought over Zambia and aid in strategic planning to limit the potential damage of drought.
基金financial support from the National Key Research and Development Program of China(2017YFC1502404)the National Natural Science Foundation of China(41601562 and 41761014)+1 种基金the China Institute of Water Resources and Hydropower Research Team Construction and Talent Development Project(JZ0145B752017)the Research Project for Young Teachers of Fujian Province,China(JAT160085)
文摘Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles. The time-series data set from the remote sensing MOLDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000-2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series. The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified. The Cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption. Awidespread decline of ET is observed only in cultivated areas. However, agricultural cultivation doesn't worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas. This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas.
基金This study is one of the research projects sponsored by the Monsoon Research Foundation of State Meteorological Administration.
文摘By using the one-point correlation method, calculations have been made of the northern early summer 500 hPa teleconnection patterns. Seven teleconnection patterns are revealed, namely, the Western Atlantic (WA), the Eastern Atlantic (EA), the Eurasian (EU), the Bengal / Northern Pacific (BNP), the Western Pacific (WP), the East Asian / Pacific (EAP), and the Huanghe / East Asian (HEA) patterns. Their centers are determined and their yearly intensity indices (1951-1990) are calculated. On this basis the relationship between their interannual variations and the drought / flood in China is examined. It is noted that the EU, HEA and EAP wave trains are closely related to the drought / flood in China. The HEA and EAP patterns strongly influence the precipitation in eastern China. For example, the fierce floods experienced in 1991 early summer over China are related to the weak EAP and strong HEA patterns.
文摘This study focused on identifying drought patterns particularly during the growing seasons along the coastal zone of Tanzania in order to facilitate the determination of drought impacts on forest Ecosystem. The growing seasons were March, April and May (MAM) referred as long growing season and October, November and December (OND) which is known as short growing season. The main data were precipitation from 16 weather stations covering the coastal zones of Tanzania. Standardized Precipitation Index (SPI) was used to establish meteorological drought patterns. The duration of records was between 34 and 59 years depending on the available data on the concerned stations. The SPI time series of 3 and 12 months showed that the coastal region of Tanzania experienced frequent drought conditions ranging from mild, moderate, severe and extreme droughts during both short and long growing seasons. It was found that the coastal zone of Tanzania experienced higher drought duration, severity and intensity with frequent extreme events after 2000 than before. Despite that Kisarawe area revealed low frequency of drought events (88%) than other study areas;it exhibited greater frequency of extreme droughts (46%) over the whole study areas. Higher drought duration (40 months) and severity (sum of SPI -36) were observed for precipitation data from Unguja Islands, while data from Julius Nyerere International Airport areas displayed higher drought intensity (SPI value of -1.9). Generally, Tanzania coastal zone was never completely without drought or anomalously wet conditions at any time scale during the period of record. The coastal zone was nearly entirely in drought periods especially the last decade after 2000. This suggests that vegetation in the coastal zone might have experienced the impacts of these droughts within the period. The magnitude of the impacts will be understood by tracking changes of biomass and forest cover along the coastal zone within the last decade from 2000 to 2011 in addition to the 1990/92 which experienced drought dominance for Pemba.
基金Under the auspices of the National Natural Science Foundation of China(No.41371146,41671123)National Social Science Foundation of China(No.13BJY067)
文摘Employing decoupling index and industrial structure characteristic bias index methods, this study analyzed the spatial-temporal characteristics of industrial structure transformations and their resulting carbon emissions in the Xuzhou Metropolitan Area from 2000 to 2014, with a focus on their relationships and driving factors. Our research indicates that carbon emission intensity from industrial structures in the Xuzhou Metropolitan Area at first showed an increasing trend, which then decreased. Furthermore, the relationship between emissions and industrial economic growth has been trending toward absolute decoupling. From the perspective of the center-periphery, the Xuzhou Metropolitan Area formed a concentric pattern, where both progress towards low emissions and the level of technological advancement gradually diminished from the center to the periphery. In terms of variation across provinces, the ISCB index in the eastern Henan has decreased the slowest, followed by the southern Shandong and the northern Anhui, with the northern Jiangsu ranking last. During this period, resource-and labor-intensive industries were the primary growth industries in the northern Anhui and the eastern Henan, while labor-intensive industries dominated the southern Shandong and capital-intensive industries dominated the northern Jiangsu. In terms of city types, the spatial pattern for industrial structure indicates that recession resource-based cities had higher carbon emission intensities than mature resource-based cities, followed by non-resource-based cities and regenerative resource-based cities. Generally, the industrial structure in the Xuzhou Metropolitan Area has transformed from being resource-intensive to capital-intensive, and has been trending toward technology-intensive as resource availability has been exploited to exhaustion and then been regenerated. Industrial structure has been the leading factor causing heterogeneity of carbon emission intensities between metropolitan cities. Therefore, the key to optimizing the industrial structure and layout of metropolitan areas is to promote industrial structure transformation and improve the system controlling collaborative industrial development between cities.
基金supported by the National Natural Science Foundation of China(31760424)the Scientific and Technological Project of Xinjiang Production and Construction Corps of China(2019AB021)。
文摘Understanding the heterosis in multiple environments between different heterotic groups is of fundamental importance in successful maize breeding. A total of 737 hybrids derived from 41 maize inbreds were evaluated over two years, with the aim of assessing the genetic diversity and their performance between heterotic groups under drought-stressed(DS) and well-watered(WW) treatments. A total of 38 737 SNPs were employed to assess the genetic diversity. The genetic distance(GD) between the parents ranged from 0.05 to 0.74, and the 41 inbreds were classified into five heterotic groups. According to the hybrid performance(high yield and early maturity between heterotic groups), the heterosis and heterotic patterns of Iowa Stiff Stalk Synthetic(BSSS)×Non-Stiff Stalk(NSS), NSS×Sipingtou(SPT) and BSSS×SPT were identified to be useful options in China’s maize breeding. The relative importance of general and specific combining abilities(GCA and SCA) suggests the importance of the additive genetic effects for grain yield traits under the WW treatment, but the non-additive effects under the DS treatment. At least one of the parental lines with drought tolerance and a high GCA effect would be required to achieve the ideal hybrid performance under drought conditions. GD showed a positive correlation with yield and yield heterosis in within-group hybrids over a certain range of GD. The present investigation suggests that the heterosis is due to the combined accumulation of superior genes/alleles in parents and the optimal genetic distance between parents, and that yield heterosis under DS treatment was mainly determined by the non-additive effects.
文摘[目的]揭示黄土高原典型区域百年尺度干旱演化特征,与地貌类型耦合阐明气象干旱的时空变化规律,进而为北洛河流域综合治理提供科技支撑。[方法]基于1915—2020年北洛河流域1 km分辨率的平均气温及降水数据,计算了年际标准化降水蒸散指数(SPEI),并结合Theil-Sen Median趋势分析、Mann-Kendall检验、小波分析、反距离权重插值(IDW)等方法,分析了流域内100余年不同地貌类型区的气象干旱时空演变特征。[结果](1)北洛河流域降水量及平均气温的空间分布差异较大,总体呈现东南向西北递减的特点;降水量多呈条带状分布,平均气温沿河道自上而下梯度增加,上游区(丘陵沟壑区)降水量相对较少,下游区(阶地平原区)平均气温相对偏高;(2) 1915—2020年北洛河流域SPEI-12震荡明显,干旱事件交替出现且弱减,下降速率为-0.04/10 a, 1942年,1990年和2010年为旱势转折年,并以1990年最为明显;周期变化大致可从1960年分为两个时期,之前以10 a, 17 a为主,其后为3 a, 7 a, 30 a左右,10 a和30 a周期在不同时期干旱变化中起主导作用;(3) SPEI-12的不显著下降趋势具有全域性且由东北向西南有增大趋势,表明北洛河流域总体呈弱旱化发展;(4)不同年代干旱事件发生频率差异较大,1990s重旱和特旱发生频率最高;2000s不同类型干旱事件发生的总频率最大,其中上游区(丘陵沟壑区)和下游区(阶地平原区)可达70%,而中游区(土石山林区和高原沟壑区)约为60%;(5)不同类型干旱空间分布存在异质性,轻旱发生频率有自南向北逐渐降低的趋势,中旱发生频率与之相反。总体来看,北洛河流域上游区(丘陵沟壑区)易发生中旱,下游区(阶地平原区)更易发生轻旱,重旱高发区在流域内零散分布,特旱的发生概率仅为1.69%~2.10%。[结论]全球变暖引发的旱化趋势在黄土高原地区的影响客观存在,北洛河流域不同地貌类型区气象干旱发生的高频类型略有差别,未来应提升中下游地区的抗旱减灾能力。