The discovery of gradual moving object clusters pattern from trajectory streams allows characterizing movement behavior in real time environment,which leverages new applications and services.Since the trajectory strea...The discovery of gradual moving object clusters pattern from trajectory streams allows characterizing movement behavior in real time environment,which leverages new applications and services.Since the trajectory streams is rapidly evolving,continuously created and cannot be stored indefinitely in memory,the existing approaches designed on static trajectory datasets are not suitable for discovering gradual moving object clusters pattern from trajectory streams.This paper proposes a novel algorithm of gradual moving object clusters pattern discovery from trajectory streams using sliding window models.By processing the trajectory data in current window,the mining algorithm can capture the trend and evolution of moving object clusters pattern.Firstly,the density peaks clustering algorithm is exploited to identify clusters of different snapshots.The stable relationship between relatively few moving objects is used to improve the clustering efficiency.Then,by intersecting clusters from different snapshots,the gradual moving object clusters pattern is updated.The relationship of clusters between adjacent snapshots and the gradual property are utilized to accelerate updating process.Finally,experiment results on two real datasets demonstrate that our algorithm is effective and efficient.展开更多
A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were gen...A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were generated by an Apriori based frequent patterns mining algorithm and the trajectories were classified by the frequent trajectory patterns generated.In addition,a fuzzy c-means(FCM)based learning algorithm and a mean shift based clustering procedure were used to construct the representation of trajectories.The algorithm can be further used to describe activities and identify anomalies.The experiments on two real scenes show that the algorithm is effective.展开更多
The volume of trajectory data has become tremendously huge in recent years. How to effectively and efficiently maintain and compute such trajectory data has become a challenging task. In this paper, we propose a traje...The volume of trajectory data has become tremendously huge in recent years. How to effectively and efficiently maintain and compute such trajectory data has become a challenging task. In this paper, we propose a trajectory spatial and temporal compression framework, namely CLEAN. The key of spatial compression is to mine meaningful trajectory frequent patterns on road network. By treating the mined patterns as dictionary items, the long trajectories have the chance to be encoded by shorter paths, thus leading to smaller space cost. And an error-bounded temporal compression is carefully designed on top of the identified spatial patterns for much low space cost. Meanwhile, the patterns are also utilized to improve the performance of two trajectory applications, range query and clustering, without decompression overhead. Extensive experiments on real trajectory datasets validate that CLEAN significantly outperforms existing state-of-art approaches in terms of spatial-temporal compression and trajectory applications.展开更多
In order to detect the traffic pattern of moving objects in the city more accurately and quickly, a parallel algorithm for detecting traffic patterns using stay points and moving features is proposed. First, the featu...In order to detect the traffic pattern of moving objects in the city more accurately and quickly, a parallel algorithm for detecting traffic patterns using stay points and moving features is proposed. First, the features of the stay points in different traffic patterns are extracted, that is, the stay points of various traffic patterns are identified, respectively, and the clustering algorithm is used to mine the unique features of the stop points to different traffic patterns. Then, the moving features in different traffic patterns are extracted from a trajectory of a moving object, including the maximum speed, the average speed, and the stopping rate. A classifier is constructed to predict the traffic pattern of the trajectory using the stay points and moving features. Finally, a parallel algorithm based on Spark is proposed to detect traffic patterns. Experimental results show that the stay points and moving features can reflect the difference between different traffic modes to a greater extent, and the detection accuracy is higher than those of other methods. In addition, the parallel algorithm can increase the speed of identifying traffic patterns.展开更多
User-generated social media data tagged with geographic information present messages of dynamic spatiotemporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding ...User-generated social media data tagged with geographic information present messages of dynamic spatiotemporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding of human mobility behaviors. Several trajectory data mining approaches have been proposed to benefit from these rich datasets, but fail to incorporate aspatial semantics in mining. This study investigates mining frequent moving sequences of geographic entities with transit time from geo-tagged data. Different from previous analysis of geographic feature only trajectories, this work focuses on extracting patterns with rich context semantics. We extend raw geographic trajectories generated from geo-tagged data with rich context semantic annotations, use regions-of-interest as stops to represent interesting places, enrich them with multiple aspatial semantic annotations, and propose a semantic trajectory pattern mining algorithm that returns basic and multidimensional semantic trajectory patterns. Experimental results demonstrate that semantic trajectory patterns from our method present semantically meaningful patterns and display richer semantic knowledge.展开更多
Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-...Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-temporal data by a novel method adopting the concepts of clustering and sequential pattern mining. The algorithms used logically split the trajectory span area into clusters and then apply the k-means algorithm over this clusters until the squared error minimizes. The new method applies the threshold to obtain active clusters and arranges them in descending order based on number of trajectories passing through. From these active clusters, inter cluster patterns are found by a sequential pattern mining technique. The process is repeated until all the active clusters are linked. The clusters thus linked in sequence are the frequent trajectories. A set of experiments conducted using real datasets shows that the proposed method is relatively five times better than the existing ones. A comparison is made with the results of other algorithms and their variation is analyzed by statistical methods. Further, tests of significance are conducted with ANOVA to find the efficient threshold value for the optimum plot of frequent trajectories. The results are analyzed and found to be superior than the existing ones. This approach may be of relevance in finding alternate paths in busy networks ( congestion control), finding the frequent paths of migratory birds, or even to predict the next level of pattern characteristics in case of time series data with minor alterations and finding the frequent path of balls in certain games.展开更多
With the widespread adoption of location- aware technology, obtaining long-sequence, massive and high-accuracy spatiotemporal trajectory data of individuals has become increasingly popular in various geographic studie...With the widespread adoption of location- aware technology, obtaining long-sequence, massive and high-accuracy spatiotemporal trajectory data of individuals has become increasingly popular in various geographic studies. Trajectory data of taxis, one of the most widely used inner-city travel modes, contain rich information about both road network traffic and travel behavior of passengers. Such data can be used to study the microscopic activity patterns of individuals as well as the macro system of urban spatial structures. This paper focuses on trajectories obtained from GPS-enabled taxis and their applications for mining urban commuting patterns. A novel approach is proposed to discover spatiotemporal patterns of household travel from the taxi trajectory dataset with a large number of point locations. The approach involves three critical steps: spatial clustering of taxi origin-destination (OD) based on urban traffic grids to discover potentially meaningful places, identifying thresh- old values from statistics of the OD clusters to extract urban jobs-housing structures, and visualization of analytic results to understand the spatial distribution and temporal trends of the revealed urban structures and implied household commuting behavior. A case study with a taxi trajectory dataset in Shanghai, China is presented to demonstrate and evaluate the proposed method.展开更多
基金This work is supported by the National Natural Science Foundationof China under Grants No. 41471371.
文摘The discovery of gradual moving object clusters pattern from trajectory streams allows characterizing movement behavior in real time environment,which leverages new applications and services.Since the trajectory streams is rapidly evolving,continuously created and cannot be stored indefinitely in memory,the existing approaches designed on static trajectory datasets are not suitable for discovering gradual moving object clusters pattern from trajectory streams.This paper proposes a novel algorithm of gradual moving object clusters pattern discovery from trajectory streams using sliding window models.By processing the trajectory data in current window,the mining algorithm can capture the trend and evolution of moving object clusters pattern.Firstly,the density peaks clustering algorithm is exploited to identify clusters of different snapshots.The stable relationship between relatively few moving objects is used to improve the clustering efficiency.Then,by intersecting clusters from different snapshots,the gradual moving object clusters pattern is updated.The relationship of clusters between adjacent snapshots and the gradual property are utilized to accelerate updating process.Finally,experiment results on two real datasets demonstrate that our algorithm is effective and efficient.
基金National High-Tech Research and Development Plan of China(No.2003AA1Z2130)Science and Technology Project of Zhejiang Province of China(No.2005C1100102)
文摘A frequent trajectory patterns mining algorithm is proposed to learn the object activities and classify the trajectories in intelligent visual surveillance system.The distribution patterns of the trajectories were generated by an Apriori based frequent patterns mining algorithm and the trajectories were classified by the frequent trajectory patterns generated.In addition,a fuzzy c-means(FCM)based learning algorithm and a mean shift based clustering procedure were used to construct the representation of trajectories.The algorithm can be further used to describe activities and identify anomalies.The experiments on two real scenes show that the algorithm is effective.
基金National Natural Science Foundation of China (Grant No. 61772371,No. 61972286)
文摘The volume of trajectory data has become tremendously huge in recent years. How to effectively and efficiently maintain and compute such trajectory data has become a challenging task. In this paper, we propose a trajectory spatial and temporal compression framework, namely CLEAN. The key of spatial compression is to mine meaningful trajectory frequent patterns on road network. By treating the mined patterns as dictionary items, the long trajectories have the chance to be encoded by shorter paths, thus leading to smaller space cost. And an error-bounded temporal compression is carefully designed on top of the identified spatial patterns for much low space cost. Meanwhile, the patterns are also utilized to improve the performance of two trajectory applications, range query and clustering, without decompression overhead. Extensive experiments on real trajectory datasets validate that CLEAN significantly outperforms existing state-of-art approaches in terms of spatial-temporal compression and trajectory applications.
基金The National Natural Science Foundation of China(No.41471371)
文摘In order to detect the traffic pattern of moving objects in the city more accurately and quickly, a parallel algorithm for detecting traffic patterns using stay points and moving features is proposed. First, the features of the stay points in different traffic patterns are extracted, that is, the stay points of various traffic patterns are identified, respectively, and the clustering algorithm is used to mine the unique features of the stop points to different traffic patterns. Then, the moving features in different traffic patterns are extracted from a trajectory of a moving object, including the maximum speed, the average speed, and the stopping rate. A classifier is constructed to predict the traffic pattern of the trajectory using the stay points and moving features. Finally, a parallel algorithm based on Spark is proposed to detect traffic patterns. Experimental results show that the stay points and moving features can reflect the difference between different traffic modes to a greater extent, and the detection accuracy is higher than those of other methods. In addition, the parallel algorithm can increase the speed of identifying traffic patterns.
文摘User-generated social media data tagged with geographic information present messages of dynamic spatiotemporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding of human mobility behaviors. Several trajectory data mining approaches have been proposed to benefit from these rich datasets, but fail to incorporate aspatial semantics in mining. This study investigates mining frequent moving sequences of geographic entities with transit time from geo-tagged data. Different from previous analysis of geographic feature only trajectories, this work focuses on extracting patterns with rich context semantics. We extend raw geographic trajectories generated from geo-tagged data with rich context semantic annotations, use regions-of-interest as stops to represent interesting places, enrich them with multiple aspatial semantic annotations, and propose a semantic trajectory pattern mining algorithm that returns basic and multidimensional semantic trajectory patterns. Experimental results demonstrate that semantic trajectory patterns from our method present semantically meaningful patterns and display richer semantic knowledge.
基金the receipt of research supported by the TATA Consultancy Service's scholarship
文摘Data mining is a powerful emerging technology that helps to extract hidden information from a huge volume of historical data. This paper is concerned with finding the frequent trajectories of moving objects in spatio-temporal data by a novel method adopting the concepts of clustering and sequential pattern mining. The algorithms used logically split the trajectory span area into clusters and then apply the k-means algorithm over this clusters until the squared error minimizes. The new method applies the threshold to obtain active clusters and arranges them in descending order based on number of trajectories passing through. From these active clusters, inter cluster patterns are found by a sequential pattern mining technique. The process is repeated until all the active clusters are linked. The clusters thus linked in sequence are the frequent trajectories. A set of experiments conducted using real datasets shows that the proposed method is relatively five times better than the existing ones. A comparison is made with the results of other algorithms and their variation is analyzed by statistical methods. Further, tests of significance are conducted with ANOVA to find the efficient threshold value for the optimum plot of frequent trajectories. The results are analyzed and found to be superior than the existing ones. This approach may be of relevance in finding alternate paths in busy networks ( congestion control), finding the frequent paths of migratory birds, or even to predict the next level of pattern characteristics in case of time series data with minor alterations and finding the frequent path of balls in certain games.
基金This research is sponsored by the National High Technology Research and Development of China (No. 2013AA 12A402), the National Natural Science Foundation of China (Grant Nos. 40771138, 41101371, and 41301484) and the Zhejiang Province Key Scientific and Technological Project (No. 2013C01124). Thanks to Dr. Zhongwei Deng for providing taxi trajectory data of Shanghai, China.
文摘With the widespread adoption of location- aware technology, obtaining long-sequence, massive and high-accuracy spatiotemporal trajectory data of individuals has become increasingly popular in various geographic studies. Trajectory data of taxis, one of the most widely used inner-city travel modes, contain rich information about both road network traffic and travel behavior of passengers. Such data can be used to study the microscopic activity patterns of individuals as well as the macro system of urban spatial structures. This paper focuses on trajectories obtained from GPS-enabled taxis and their applications for mining urban commuting patterns. A novel approach is proposed to discover spatiotemporal patterns of household travel from the taxi trajectory dataset with a large number of point locations. The approach involves three critical steps: spatial clustering of taxi origin-destination (OD) based on urban traffic grids to discover potentially meaningful places, identifying thresh- old values from statistics of the OD clusters to extract urban jobs-housing structures, and visualization of analytic results to understand the spatial distribution and temporal trends of the revealed urban structures and implied household commuting behavior. A case study with a taxi trajectory dataset in Shanghai, China is presented to demonstrate and evaluate the proposed method.