Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most cruci...Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.展开更多
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently...Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role...Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.展开更多
Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlatio...Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions,traditional detection methods can not guarantee both detection speed and accuracy.Therefore,this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks.Firstly,the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the complex topology.Secondly,design spatiotemporal convolutional units based on graph convolutional neural networks and temporal convolutional networks to improve detection speed and accuracy.Finally,the proposed method is compared with three methods,ARIMA,T-GCN,and STGCN,in real scenarios to verify its effectiveness in terms of detection speed,detection accuracy and stability.The experimental results show that the RMSE,MAE,and MAPE of this method are the smallest in the cases of simple connectivity and complex connectivity degree,which are 13.82/12.08,2.77/2.41,and 16.70/14.73,respectively.Also,it detects the shortest time of 672.31/887.36,respectively.In addition,the evaluation results are the same under different time periods of processing and complex topology environment,which indicates that the detection accuracy of this method is the highest and has good research value and application prospects.展开更多
In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotempor...In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science.展开更多
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t...Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.展开更多
This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model ...This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.展开更多
This paper integrates genetic algorithm and neura l network techniques to build new temporal predicting analysis tools for geographic information system (GIS). These new GIS tools can be readily applied in a practical...This paper integrates genetic algorithm and neura l network techniques to build new temporal predicting analysis tools for geographic information system (GIS). These new GIS tools can be readily applied in a practical and appropriate manner in spatial and temp oral research to patch the gaps in GIS data mining and knowledge discovery functions. The specific achievement here is the integration of related artificial intellig ent technologies into GIS software to establish a conceptual spatial and temporal analysis framework. And, by using this framework to develop an artificial intelligent spatial and tempor al information analyst (ASIA) system which then is fully utilized in the existin g GIS package. This study of air pollutants forecasting provides a geographical practical case to prove the rationalization and justness of the conceptual tempo ral analysis framework.展开更多
For sequential performance of wave variational data assimilation, we proposed a temporal sliding method in which the temporal overlap is considered. The advantage of this method is that the initial wave spectrum of th...For sequential performance of wave variational data assimilation, we proposed a temporal sliding method in which the temporal overlap is considered. The advantage of this method is that the initial wave spectrum of the optimization process is modified by the observations in latter and former times. This temporal sliding procedure is important for marginal region, such as the China seas, where the duration of assimilation effectiveness is 2-3 days. Experiments were performed in the whole course of Cyclone 9403 (Russ). Around the cyclone center, the maximum value of wave elements did not change much by assimilation, because the extreme value was determined by wind energy input that was not yet optimized. In the area outside the cyclone center, this modification is evident especially for wind wave growth.展开更多
Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of...Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of absolute and relative temporal consistency. In real-time database systems, it is often the case that the policies of transaction schedules only consider the deadline of real-time transactions, making it insufficient to ensure temporal correctness of transactions. A policy is given by considering both the deadlines of transactions and the “data deadline” to schedule real-time transactions. A real-time relational data model and a real-time relational algebra based on the characteristics of temporal data are also proposed. In this model, the temporal data has not only corresponding values, but also validity intervals corresponding to the data values. At the same time, this model is able to keep historical data values. When validity interval of a relation is [NOW, NOW], real-time relational algebra will transform to traditional relational algebra.展开更多
As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which co...As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which combine compress technology in existence in order to settle datum redundancy in the course of temporal datum storage and temporal datum of slow acting domain and momentary acting domain are accessed by using each from independence clock method and mutual clock method .We also bring forward strategy of gridding storage to resolve the problems of temporal datum rising rapidly.展开更多
On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and ...On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and so on.And it also expanded the data contents,such as the indoor and outdoor data,the overground and underground data,panoramic data and real data.It also introduced the contents of historical geographical information in different periods and real-time location information,address information of sensing equipment,real-time perception and interpreting information.It has overcome the difficulties of real-time access of Internet of Things(IoT)perception,multi-node collaboration,64-bit support,cluster deployment and has the characteristics of spatio-temporal management,ondemand service,large data analysis and micro-service architecture.It built spatio-temporal information big data center and spatio-temporal information cloud platform,realized the convergence and management of the distributed big data,deeply applied for land,transportation,environmental protection,police and subdistrict five areas,by supporting the integrated application of multi-source information and supporting intelligent deep application.In the aspect of hardware environment construction,according to the top-level design and unified arrangement of Smart Weifang,the WFCP was migrated to Weifang cloud computing center,to achieve the on-demand computing resources and dynamic scheduling load-based computing resources,to support the generalizing load map application.展开更多
The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-tempora...The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-temporal data, using the combined data structure on linear quadtree and linear octree to code. The advantage of this model is that it can easily obtain the information of certain layer and integratedly analyze the data with other methods. Then, the methods of obtain and analyses are introduced. The method can provide a tool for the research of the soil characteristic change and spatial distribution in reclamation land.展开更多
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f...Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.展开更多
Faster internet, IoT, and social media have reformed the conventional web into a collaborative web resulting in enormous user-generated content. Several studies are focused on such content;however, they mainly focus o...Faster internet, IoT, and social media have reformed the conventional web into a collaborative web resulting in enormous user-generated content. Several studies are focused on such content;however, they mainly focus on textual data, thus undermining the importance of metadata. Considering this gap, we provide a temporal pattern mining framework to model and utilize user-generated content's metadata. First, we scrap 2.1 million tweets from Twitter between Nov-2020 to Sep-2021 about 100 hashtag keywords and present these tweets into 100 User-Tweet-Hashtag (UTH) dynamic graphs. Second, we extract and identify four time-series in three timespans (Day, Hour, and Minute) from UTH dynamic graphs. Lastly, we model these four time-series with three machine learning algorithms to mine temporal patterns with the accuracy of 95.89%, 93.17%, 90.97%, and 93.73%, respectively. We demonstrate that user-generated content's metadata contains valuable information, which helps to understand the users' collective behavior and can be beneficial for business and research. Dataset and codes are publicly available;the link is given in the dataset section.展开更多
Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a mac...Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.展开更多
Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the ro...Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.展开更多
The shoreline morphology change due to erosion and deposition is a major concern for coastal zone management. In the present study, a highly dynamic coast of Gahirmatha on Bay of Bengal? in northeast India is experien...The shoreline morphology change due to erosion and deposition is a major concern for coastal zone management. In the present study, a highly dynamic coast of Gahirmatha on Bay of Bengal? in northeast India is experiencing active erosion, which is mainly wave and tide erosion related hazard threat ending human habitation and sustainability of the coast. In our study, high resolution satellite imagery of time series provided detailed sequence of coastal morphology and their changes in all respects. Comparison study of relative shoreline positions on time series satellite data spanning?three decades from 1973 to 2004 covering for the years of 1973, 1983, 1987, 1990, 1998, 2000 and 2004, provided regional changes with accelerated erosion and accretion. The result of the studies?have revealed that the areas of severe erosion found along the coast are confined to the promontories of the present day mouths itself of the Baitrani at Dhamra and Brahmani at Maipura inlets. In this background, it is significant to understand the magnitude of factors that are responsible for prograding or retrograding of coast. The present study is an attempt in this direction.展开更多
文摘Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.
基金supported by the National Key Basic Research and Development Program of China under contract No.2006CB701305the National Natural Science Foundation of China under coutract No.40571129the National High-Technology Program of China under contract Nos 2002AA639400,2003AA604040 and 2003AA637030.
文摘Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金supported by the Natural Science Foundation of Hubei Province, China (2017CFB434)the National Natural Science Foundation of China (41506208 and 61501200)the Basic Research Funds for Yellow River Institute of Hydraulic Research, China (HKYJBYW-2016-06)
文摘Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.
基金supported by the National Natural Science Foundation of China under Grants 42172161by the Heilongjiang Provincial Natural Science Foundation of China under Grant LH2020F003+2 种基金by the Heilongjiang Provincial Department of Education Project of China under Grants UNPYSCT-2020144by the Innovation Guidance Fund of Heilongjiang Province of China under Grants 15071202202by the Science and Technology Bureau Project of Qinhuangdao Province of China under Grants 202101A226.
文摘Spatio-temporal heterogeneous data is the database for decisionmaking in many fields,and checking its accuracy can provide data support for making decisions.Due to the randomness,complexity,global and local correlation of spatiotemporal heterogeneous data in the temporal and spatial dimensions,traditional detection methods can not guarantee both detection speed and accuracy.Therefore,this article proposes a method for detecting the accuracy of spatiotemporal heterogeneous data by fusing graph convolution and temporal convolution networks.Firstly,the geographic weighting function is introduced and improved to quantify the degree of association between nodes and calculate the weighted adjacency value to simplify the complex topology.Secondly,design spatiotemporal convolutional units based on graph convolutional neural networks and temporal convolutional networks to improve detection speed and accuracy.Finally,the proposed method is compared with three methods,ARIMA,T-GCN,and STGCN,in real scenarios to verify its effectiveness in terms of detection speed,detection accuracy and stability.The experimental results show that the RMSE,MAE,and MAPE of this method are the smallest in the cases of simple connectivity and complex connectivity degree,which are 13.82/12.08,2.77/2.41,and 16.70/14.73,respectively.Also,it detects the shortest time of 672.31/887.36,respectively.In addition,the evaluation results are the same under different time periods of processing and complex topology environment,which indicates that the detection accuracy of this method is the highest and has good research value and application prospects.
文摘In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science.
基金supported by the National Key Research and Development Program of China(No.2018YFB2101300)the National Natural Science Foundation of China(Grant No.61871186)the Dean’s Fund of Engineering Research Center of Software/Hardware Co-Design Technology and Application,Ministry of Education(East China Normal University).
文摘Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.
文摘This paper presents a conceptual data model, the STA-model, for handling spatial, temporal and attribute aspects of objects in GIS. The model is developed on the basis of object-oriented modeling approach. This model includes two major parts: (a) modeling the signal objects by STA-object elements, and (b) modeling relationships between STA-objects. As an example, the STA-model is applied for modeling land cover change data with spatial, temporal and attribute components.
文摘This paper integrates genetic algorithm and neura l network techniques to build new temporal predicting analysis tools for geographic information system (GIS). These new GIS tools can be readily applied in a practical and appropriate manner in spatial and temp oral research to patch the gaps in GIS data mining and knowledge discovery functions. The specific achievement here is the integration of related artificial intellig ent technologies into GIS software to establish a conceptual spatial and temporal analysis framework. And, by using this framework to develop an artificial intelligent spatial and tempor al information analyst (ASIA) system which then is fully utilized in the existin g GIS package. This study of air pollutants forecasting provides a geographical practical case to prove the rationalization and justness of the conceptual tempo ral analysis framework.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)Na- tional Natural Science Foundation of China (No. 40206003).
文摘For sequential performance of wave variational data assimilation, we proposed a temporal sliding method in which the temporal overlap is considered. The advantage of this method is that the initial wave spectrum of the optimization process is modified by the observations in latter and former times. This temporal sliding procedure is important for marginal region, such as the China seas, where the duration of assimilation effectiveness is 2-3 days. Experiments were performed in the whole course of Cyclone 9403 (Russ). Around the cyclone center, the maximum value of wave elements did not change much by assimilation, because the extreme value was determined by wind energy input that was not yet optimized. In the area outside the cyclone center, this modification is evident especially for wind wave growth.
基金Project 60073045 supported by National Natural Science Foundation of China
文摘Real-time database systems contain not only transaction timing constraints, but also data timing constraints. This paper discusses the temporal characteristics of data in real-time databases and offers a definition of absolute and relative temporal consistency. In real-time database systems, it is often the case that the policies of transaction schedules only consider the deadline of real-time transactions, making it insufficient to ensure temporal correctness of transactions. A policy is given by considering both the deadlines of transactions and the “data deadline” to schedule real-time transactions. A real-time relational data model and a real-time relational algebra based on the characteristics of temporal data are also proposed. In this model, the temporal data has not only corresponding values, but also validity intervals corresponding to the data values. At the same time, this model is able to keep historical data values. When validity interval of a relation is [NOW, NOW], real-time relational algebra will transform to traditional relational algebra.
文摘As there is datum redundancy in tradition database and temporal database in existence and the quantities of temporal database are increasing fleetly. We put forward compress storage tactics for temporal datum which combine compress technology in existence in order to settle datum redundancy in the course of temporal datum storage and temporal datum of slow acting domain and momentary acting domain are accessed by using each from independence clock method and mutual clock method .We also bring forward strategy of gridding storage to resolve the problems of temporal datum rising rapidly.
文摘On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and so on.And it also expanded the data contents,such as the indoor and outdoor data,the overground and underground data,panoramic data and real data.It also introduced the contents of historical geographical information in different periods and real-time location information,address information of sensing equipment,real-time perception and interpreting information.It has overcome the difficulties of real-time access of Internet of Things(IoT)perception,multi-node collaboration,64-bit support,cluster deployment and has the characteristics of spatio-temporal management,ondemand service,large data analysis and micro-service architecture.It built spatio-temporal information big data center and spatio-temporal information cloud platform,realized the convergence and management of the distributed big data,deeply applied for land,transportation,environmental protection,police and subdistrict five areas,by supporting the integrated application of multi-source information and supporting intelligent deep application.In the aspect of hardware environment construction,according to the top-level design and unified arrangement of Smart Weifang,the WFCP was migrated to Weifang cloud computing center,to achieve the on-demand computing resources and dynamic scheduling load-based computing resources,to support the generalizing load map application.
文摘The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-temporal data, using the combined data structure on linear quadtree and linear octree to code. The advantage of this model is that it can easily obtain the information of certain layer and integratedly analyze the data with other methods. Then, the methods of obtain and analyses are introduced. The method can provide a tool for the research of the soil characteristic change and spatial distribution in reclamation land.
基金supported by National Natural Science Foundation of China(Grant No.41901382)Open Fund of State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201917)the HZAU research startup fund(No.11041810340,No.11041810341).
文摘Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.
基金supported by the National Natural Science Foundation of China(grant no.61573328).
文摘Faster internet, IoT, and social media have reformed the conventional web into a collaborative web resulting in enormous user-generated content. Several studies are focused on such content;however, they mainly focus on textual data, thus undermining the importance of metadata. Considering this gap, we provide a temporal pattern mining framework to model and utilize user-generated content's metadata. First, we scrap 2.1 million tweets from Twitter between Nov-2020 to Sep-2021 about 100 hashtag keywords and present these tweets into 100 User-Tweet-Hashtag (UTH) dynamic graphs. Second, we extract and identify four time-series in three timespans (Day, Hour, and Minute) from UTH dynamic graphs. Lastly, we model these four time-series with three machine learning algorithms to mine temporal patterns with the accuracy of 95.89%, 93.17%, 90.97%, and 93.73%, respectively. We demonstrate that user-generated content's metadata contains valuable information, which helps to understand the users' collective behavior and can be beneficial for business and research. Dataset and codes are publicly available;the link is given in the dataset section.
基金Sponsored by the Transportation Science and Technology Planning Project of Henan Province,China(Grant No.2019G-2-2).
文摘Bus arrival time prediction contributes to the quality improvement of public transport services.Passengers can arrange departure time effectively if they know the accurate bus arrival time in advance.We proposed a machine⁃learning approach,RTSI⁃ResNet,to forecast the bus arrival time at target stations.The residual neural network framework was employed to model the bus route temporal⁃spatial information.It was found that the bus travel time on a segment between two stations not only had correlation with the preceding buses,but also had common change trends with nearby downstream/upstream segments.Two features about bus travel time and headway were extracted from bus route including target section in both forward and reverse directions to constitute the route temporal⁃spatial information,which reflects the road traffic conditions comprehensively.Experiments on the bus trajectory data of route No.10 in Shenzhen public transport system demonstrated that the proposed RTSI⁃ResNet outperformed other well⁃known methods(e.g.,RNN/LSTM,SVM).Specifically,the advantage was more significant when the distance between bus and the target station was farther.
基金funded by National High Technology Research and Development Program of China (863 Program,2012AA092303)Project of Shanghai Science and Technology Innovation (12231203900)+2 种基金Industrialization Program of National Development and Reform Commission (2159999)National Science and Technology Support Program (2013BAD13B01)Shanghai Leading Academic Discipline Project
文摘Temporal and spatial scales play important roles in fishery ecology,and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution.The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling,with the western stock of winter-spring cohort of neon flying squid (Ornmastrephes bartramii) in the northwest Pacific Ocean as an example.In this study,the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used.We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°,1 ° and 2°),four longitude scales (0.5°,1°,2° and 4°),and three temporal scales (week,fortnight,and month).The coefficients of variation (CV) of the weekly,biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise.This study shows that the optimal temporal and spatial scales with the lowest CV are month,and 0.5° latitude and 0.5° longitude for O.bartramii in the northwest Pacific Ocean.This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts.We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.
文摘The shoreline morphology change due to erosion and deposition is a major concern for coastal zone management. In the present study, a highly dynamic coast of Gahirmatha on Bay of Bengal? in northeast India is experiencing active erosion, which is mainly wave and tide erosion related hazard threat ending human habitation and sustainability of the coast. In our study, high resolution satellite imagery of time series provided detailed sequence of coastal morphology and their changes in all respects. Comparison study of relative shoreline positions on time series satellite data spanning?three decades from 1973 to 2004 covering for the years of 1973, 1983, 1987, 1990, 1998, 2000 and 2004, provided regional changes with accelerated erosion and accretion. The result of the studies?have revealed that the areas of severe erosion found along the coast are confined to the promontories of the present day mouths itself of the Baitrani at Dhamra and Brahmani at Maipura inlets. In this background, it is significant to understand the magnitude of factors that are responsible for prograding or retrograding of coast. The present study is an attempt in this direction.