The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of sh...The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of shallow groundwater in Suxian is explored using Piper trilinear charts and Gibbs diagrams,and by examining the ratios between the major ions.United States Salinity Laboratory(USSL)charts,Wilcox diagrams,and the water quality index(WQI)are further employed to quantify the differences in water quality.The results reveal that the main hydrochemical facies of groundwater are HC03-Ca,and that silicate dissolution is the main factor controlling the ion content in shallow groundwater.The USSL charts and Wilcox diagrams show that most of the water samples would be acceptable for use in irrigation systems.The WQI results for each water sample are compared and analyzed,and the quality of groundwater samples around collapse ponds is found to be relatively poor.展开更多
The main aim of this research is to evaluate the water quality of King Abdullah Canal (KAC) using the water quality index method (WQI). For this purpose, nine different sampling sites were used in the calculation of W...The main aim of this research is to evaluate the water quality of King Abdullah Canal (KAC) using the water quality index method (WQI). For this purpose, nine different sampling sites were used in the calculation of WQI during the period of January to December 2012. The samples were analyzed for various physico-chemical parameters such as pH, electrical conductivity, total suspended solids, ions of Sodium, Potassium, Calcium, Magnesium, Fluorite, Chloride, Sulfate, Bicarbonate, and Nitrate in different seasons (winter, spring, summer and autumn). The analyzed results (by WQI method) have been used to suggest models for predicting water quality. The relative weight assigned to each parameter has a range from 1 to 5, based on the important parameters for drinking purposes. The computed WQI for the nine samples has a range from 46.66 to 542.08. The analysis reveals that the water quality status of the study area is varying from excellent to good in the upper part of the canal and from poor to very poor in the lower part of the canal. Comparing with the World Health Organization (WHO) and Jordan Standard (JS), the results indicate that the lower part of the canal is polluted. Therefore, the water is not safe for domestic use and needs further treatment, especially in the lower part of the canal.展开更多
In Japan, various countermeasures have been taken to improve the water quality of public waters such as rivers and lakes. Though water quality has improved, it is still insufficient. In summer, eutrophication is seen ...In Japan, various countermeasures have been taken to improve the water quality of public waters such as rivers and lakes. Though water quality has improved, it is still insufficient. In summer, eutrophication is seen in lakes and inner bays, as well as rivers. As a countermeasure to prevent eutrophication, the removal treatment of nutrient salts such as nitrogen and phosphorus is done, in addition to organic substance elimination in the domestic sewerage system. This report will show the water quality characteristics of rivers and ponds in Japan. It is considered that these investigative results are effective when the water quality improvement of the stabilization ponds where eutrophication occurs are examined in China.展开更多
The study analysed the spatial and temporal contamination levels of fresh water resources by saline intrusion in the Douala coastal area. Water samples were collected from 19 stations. 3 stations were selected from th...The study analysed the spatial and temporal contamination levels of fresh water resources by saline intrusion in the Douala coastal area. Water samples were collected from 19 stations. 3 stations were selected from the mangrove area and 16 stations were selected from the rest of the area partitioned into four transects (coastal transect, inner transect 1, inner transect 2 and inner transect 3). Sampling was done repeatedly during the wet and dry seasons. They were analyzed for physico-chemical parameters according to the American Public Health Association methods. Geostatistical analysis was used in mapping the water properties. Considerable levels of actual electrical conductivity values (208.91 to 660.63 and 45 to 7540 μS/cm for the wet and dry seasons, respectively);calcium (0.06 to 85 and 4 to 256 mg/L for the wet and dry seasons, respectively);sulphate (0 to 103 and 0 to 99 mg/L for the wet and dry seasons) and total dissolved solids (15.79 to 1467 and 20 to 3750 mg/L for the wet and dry seasons, respectively) were observed for ground water in the study area based on spatio-temporal assessment. From the output grid, it could be deduced that the south eastern region had a hint of salt water intrusion (SWI) contamination of fresh water resources with actual value highs of electrical conductivity (1790 and 820 μS/cm) for the dry and wet seasons, respectively. Calcium highs (140 and 16 mg/L) for the dry and wet seasons were obtained at the central part of the study area. The spatial distribution of calcium highs extends from the central zone of the study area in the dry season and the south eastern zone in the wet season. The southern region is more vulnerable to contamination by calcium ions during this season. An up to date scope for surveillance monitoring and forecasting regarding the deterioration of coastal aquifers is recommended. Modelling of aquifers shifts for the coastal zone should be instituted as a means of ensuring efficient fresh water resources evaluation and utilization. An indepth study of the geochemical characteristics of ground water of the coastal zone could determine factors that most significantly impact on fresh water resource quality.展开更多
Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous type...Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous types and complex composition.In addition,it can pollute soil,surface water and groundwater.In this study,the quality and pollution characteristics of gas field water in eastern Sichuan were studied by conventional water quality determination and GC-MS.The results show that the main components of gas field water in eastern Sichuan were chloride,COD Cr,SS,anionic surfactant,sulfide and other substances.The gas field water could be divided into two types according to the characteristics of water quality,of which one had high mineralization and high organic compounds,and the other had high sulfur and high organic compounds.There were 17 kinds of organic pollutants in the gas field water,mainly including alkanes,alcohols,esters and a small amount of acids.展开更多
In order to comprehensively understand the water quality in Yinma River Basin,and to analyze the spatial-temporal variation characteristics of water quality over the years and the causes of water pollution,15 sections...In order to comprehensively understand the water quality in Yinma River Basin,and to analyze the spatial-temporal variation characteristics of water quality over the years and the causes of water pollution,15 sections were selected in the Yinma River Basin.Based on the water quality monitoring data in the past decade,7 evaluation indexes including dissolved oxygen(DO),5-day biochemical oxygen demand(BOD_(5)),permanganate index(COD_(MN)),chemical oxygen demand(COD),ammonia nitrogen(NH_(4)-N),total phosphorus(TP)and total nitrogen(TN)were determined,according to the Environmental Quality Standard for Surface Water(GB3838-2002)and the historical monitoring data of rivers.The water quality of 15 sections in Yinma River Basin was comprehensively evaluated,and the water quality categories and the evolution of river water quality were analyzed.The pollution sources of Yinma River Basin were analyzed,and the constructive countermeasures were put forward according to the conclusions.展开更多
As an important river in the central part of Jilin Province, the Yinma River plays a crucial role in the daily lives of the people in Jilin Province. In this paper, 15 cross sections were selected in the Yinma River b...As an important river in the central part of Jilin Province, the Yinma River plays a crucial role in the daily lives of the people in Jilin Province. In this paper, 15 cross sections were selected in the Yinma River basin. Based on the water quality monitoring data from 2012 to 2021, referring to the Environmental Quality Standards for Surface Water (GB 3838-2002) and historical monitoring data of the river, dissolved oxygen (DO), five-day biochemical oxygen demand (BOD 5), permanganate index (COD Mn ), chemical oxygen demand (COD), ammonia nitrogen (NH 4-N), total phosphorus (TP), and total nitrogen (TN) were determined as 7 evaluation indicators, and the water quality of 15 cross sections in the Yinma River basin was comprehensively evaluated. A characteristic analysis was conducted on the water quality of the Yinma River, and its pollution sources were identified. Based on the conclusions, constructive control measures were proposed.展开更多
Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical me...Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical methods, including descriptive statistics, correlation analysis, principal component analysis, and Piper-Tri-linear diagram, were used in analyzing the temporal and spatial variations of the hydrochemical characteristics of groundwater based on monitored data from the southern plain of Beijing, China. Results indicated consistent changes of groundwater's hydrochemical characteristics in different aquifers in the study area. The percentage of HCO_3^-in total anion increased significantly in the groundwater, and hydrochemical water type evolved gradually from Ca-Mg-Cl-SO_4 based to Ca-Mg-HCO_3 based from period 2005-2007 to period 2013-2015. In shallow groundwater, the concentration of Na^+, Ca^(2+), SO_4^(2-), HCO_3^-, and total dissolved solids(TDS) increased from period 2005-2007 to period 2013-2015, and the greatest change came from HCO_3^-, rising from 428.93 to 528.96 mgL^(-1). The changes of main ionic concentrations in the deep groundwater were consistent with those in the shallow groundwater for both periods. However, the variations in deep groundwater were less than those in shallow groundwater. The temporal and spatial variations of hydrochemical characteristics reflect the groundwater quality in the study area. This study could facilitate decision-making process on the protection of groundwater resources to ensure its sustainable utilization.展开更多
The aim of this work is to evaluate the hydrogeochemical characteristics of groundwater in parts of the lower Benue Through in Nigeria as well as to evaluate the variation in groundwater chemistry data and the suitabi...The aim of this work is to evaluate the hydrogeochemical characteristics of groundwater in parts of the lower Benue Through in Nigeria as well as to evaluate the variation in groundwater chemistry data and the suitability of the groundwater for drinking and other domestic purposes.This was based on chemical analyses of 44 water samples from existing wells and boreholes in the study area.From the statistical analysis(wide ranges,median and standard deviation),it is obvious that there are significant variations in the quality/composition of groundwater in the period of sampling.The calculated SAR,Na% and RSC values indicated that the water is of excellent to good quality and is suitable for irrigation.Na and HCO3 are dominant with respect to the chemical composition of the groundwater.On the basis of water chemistry,hydrochemical indices and factor analysis the dominant controls or processes affecting the distribution of geochemical variables in the study area have been shown to be water/rock interaction which is mainly controlled by carbonate and silicate dissolution as well as anthropogenic influence to a lesser extent.Additional processes include cation exchange reactions and reverse ion exchange to a minor extent.展开更多
Forty middle and small rivers in three towns of Fengjing, Songjiang and Zhujiajiao of suburban Shanghai were chosen as sampling sites for water quality research. Measurement results of DO, CODCr, TP, TN and so on show...Forty middle and small rivers in three towns of Fengjing, Songjiang and Zhujiajiao of suburban Shanghai were chosen as sampling sites for water quality research. Measurement results of DO, CODCr, TP, TN and so on show that the rivers are under heavy eutropic conditions, which are several times greater than the critical values of the worst level (Type V) of water. Water pollution situation has different temporal and spatial characteristics. Non-point pollution, such as village domestic sewage, farmland runoff, livestock feces, has become the primary source of pollution of the middle and small rivers in suburban Shanghai.展开更多
Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols ...Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.展开更多
This study focused on analysis of the chemical characteristics of mine waters. The aim of this study is to correlate the degree of different ionic components in mine water and the influence of their convergence using ...This study focused on analysis of the chemical characteristics of mine waters. The aim of this study is to correlate the degree of different ionic components in mine water and the influence of their convergence using a combination of the three-scale AHP and fuzzy evaluation methods for the comprehensive evaluation of water quality. Ion chromatography (ICS 1100) has been used to analyze the content of the water sample while portable pH/EC/TDS/Tem- perature meters (SX 811 and SX 813) were used to test physical-chemical parameters. The results of this study show that chemistry of in No.11 gushing mine is dominated by HCO3-Na and HCO3-Ca, and had a pH between 7.1 and 8.00, belonging to neutral or slightly alkaline water. In addition, water were found to have the hardness between 18 mg/L and 542.5 mg/L. Results also show that the TDS of the roof sandstone and goaves water are higher than Cambrian limestone water, while the turbidity of the mixed water is 20 NTU in the sump, again higher than in other samples such as Cambrian limestone water. Total dissolved solids and the total hardness of Cambrian limestone groundwater mainly depend on the content of K+ + Na+, Ca2+, B={b1,b2,…,bj} and SO2-4. Thus, chemical composition changes remarkably after mine water mixing. Results showed that the coal roof sandstone water is class V while that in the sump is class III, and the Cambrian limestone groundwater is class I. In gushing, the quality of water can vary greatly;thus, water from the coal face roof sandstone and the Cambrian limestone should be stored and treated separately before being utilized.展开更多
Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security.In this study,we collected a total of 164 water samples in the wester...Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security.In this study,we collected a total of 164 water samples in the western region of the Altay Mountains,China,in 2021.We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions(including F-,Cl-,NO_(3)-,SO_(4)^(2-),Li+,Na+,NH4+,K+,Mg^(2+),and Ca^(2+))present in river water,as well as to identify the factors influencing these variations.Additionally,we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids,soluble sodium percentage,sodium adsorption ratio,and total hardness.Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00.The mean ion concentration was ranked as follows:Ca^(2+)>SO_(4)^(2-)>Na+>NO_(3)->Mg^(2+)>K+>Cl->F->NH_(4)+>Li+.Ca^(2+),SO_(4)^(2-),Na+,and NO_(3)-occupied 83%of the total ion concentration.In addition,compared with other seasons,the spatial variation of the ion concentration in spring was obvious.An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering.The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-,NO_(3)-,SO_(4)^(2-),Ca^(2+),and Na+.Overall,river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking.This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.展开更多
The aim of this research was to analyze physical and chemical characteristics of high altitude lakes (Gokyo lake series, Imja lake, Pyramid lake) of the Sagarmatha National Park, Khumbu region located above 4500 m alt...The aim of this research was to analyze physical and chemical characteristics of high altitude lakes (Gokyo lake series, Imja lake, Pyramid lake) of the Sagarmatha National Park, Khumbu region located above 4500 m altitude. The lake water was studied for three years (2008, 2009 and 2010) to compare the annual changes in the parameters. The findings created a database for present status of high land lakes of Nepal, which can be used for the management of lakes as well as to study the impact of tourism on water quality. The lake water quality in general still stands good in terms of standards for drinking water (WHO, Nepal standard) but degradation process has started. Total nitrogen in water samples was lower than the WHO standard but an increase in the nitrate nitrogen has been recorded. Similarly, total phosphorrous quality was also found increased.展开更多
ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ ...ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ and HCO3-concentrations in river water under different physical geography conditions have about two-year cycle which is corresponding to hydrometeorological quasi-biannual-oscillation(QBO). Na + Cl- SO2-4 have about two-year cycle in the area lightly affected by human activities while two-year cycle doesn’t exist in the area heavily affected by human activities. All the fluctuations of major ions have about three-month cycle. The river discharge fluctuation accounts for 43. 9% , 45.1%, 54.3%, 33.9%, 30.3% and 42. 7% of the variance of Ca2 +, Mg2+ HC03-, Na+ Cl-, SO2-4, respectively, at Wuhan from 1962 to 1985. According to the spectrum characteristic of major ions, the duration of the time series has to be at least 13 years for trend analysis of monthly water quality data.展开更多
Based on the monitoring results of environmental quality of the waters near the Oujiang River estuary from 2010 to 2017,the present situation of environmental quality of the waters was analyzed and evaluated.The resul...Based on the monitoring results of environmental quality of the waters near the Oujiang River estuary from 2010 to 2017,the present situation of environmental quality of the waters was analyzed and evaluated.The results showed that pH,DO,COD Mn ,petroleum,and heavy metal (Cu,Pb,Zn,Cd,Hg,As and Cr) content in the waters near the Oujiang River estuary did not exceed the second-class standard of Seawater Quality Standard (GB 3097-1997),while both inorganic nitrogen and reactive phosphate in the waters greatly exceeded the second-class standard.The water quality near the Oujiang River estuary was in an eutrophic state.In terms of sediment quality,the standard index of most evaluation factors except for Cu was smaller than 1,meeting the demands of sediment quality for environmental protection.展开更多
Safe and reliable drinking water availability constitutes a nightmare in many towns of developing countries and is usually appreciated from its physical appearance without prior knowledge of its chemical and biologica...Safe and reliable drinking water availability constitutes a nightmare in many towns of developing countries and is usually appreciated from its physical appearance without prior knowledge of its chemical and biological properties. This study investigates the suitability of groundwater for domestic and irrigational purposes through physico-chemical and bacteriological analyses in the Northern part of Bamenda Town (Cameroon). Thus, 20 groundwater samples were collected from hand-dug wells and spring sources in September 2018 (rainy season) and February 2019 (dry season) and physico-chemical and bacteriological characteristics were determined. The results revealed that pH ranged from 5.5 to 6.6, thus enabling the classification of the water as slightly acidic. Electrical conductivity varied between 0.01 - 0.06 μS/cm. The relative abundance of ions was such that Ca<sup>2+</sup> > K<sup>+</sup> > Mg<sup>2+</sup> > Na<sup>+</sup> for cations and <span style="white-space:nowrap;">HCO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > Cl<sup>-</sup> > <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > <span style="white-space:nowrap;">SO<sup>-</sup><sub style="margin-left:-7px;">4</sub></span> for anions. The water types were Ca-Mg-NO<sub>3</sub> in both dry and rainy seasons. The results revealed that the mechanisms controlling groundwater chemistry are rock weathering and atmospheric precipitation. Indicator bacteria such as <em>E. coli</em>, <em>Shigella</em>, <em>Enterobacteria</em>, <em>Vibrio</em>, <em>Streptococcus</em> and <em>Staphylococcus</em> were detected in the studied groundwater samples, thus the water sources may pose a threat to public health.展开更多
Selected results of research connected with the development of a (3D) geostatistical hydrogeocbemical model of the Klodzko city area, dedicated to the spatial and time variation in the quality parameters in the Klod...Selected results of research connected with the development of a (3D) geostatistical hydrogeocbemical model of the Klodzko city area, dedicated to the spatial and time variation in the quality parameters in the Klodzko water supply system (SW part of Poland) have been presented. The research covers the period 2007-2011. Spatial analyses of the variation in three quality parameters, i.e. Fe iron (g/m3) content, Mn manganese (g/m3) content and NI-I4+ ammonium ion (g/m3) content, were carried out. Spatial and time variation in the parameters was analyzed on the basis of the data (2007-2011). The input for the studies was the chemical determinations of the quality parameters of water samples taken in the Klodzko water supply system area (also treated water) in different periods of time. These data were subjected to spatial analyses using geostatistical methods. The parameters of the assumed theoretical models of directional semivariograms functions of the studied regionalized variables, were used in the ordinary (block) kriging estimation. Generally, the behaviour of the quality parameters in the Klodzko water supply system has been found to vary in space and time. Thanks to the multivariate spatial analyses some regularities in the variation in the water supply system in the Klodzko city area have been identified. In the considered time interval, the shapes of the directional Fe iron content semivariogram show a tendency to vary periodically. The courses of the directional semivariograms of Mn manganese content and NI-I4+ ammonium ion content show some tendencies towards directional variation over the passing years. There are visible distinct increasing trends of variability for Mn content and stronger variation are observed for NH4+ ion content. The kriging estimation results were used to determine the levels of elevated values 2* of the water quality parameters in the years 2007-2011 and to forecast these values for the years 2012-2014. The maximum values Z* of the quality parameters were stated for the years: 2007, 2008-2009 and 2012 (the decreasing trend in Fe iron content averages Z* variation towards the year 2012, the increasing trend in Mn content averages Z* variation towards the year 2012 and the increasing trend in NH4+ ion content averages Z* variation towards the years 2008-2009 and then the decreasing trend towards the year 2012).展开更多
The research work is aimed at assessing the subsurface or groundwater suitability for human use or consumption depends upon the calculated water quality index values,correlation coefficient and regression analysis.The...The research work is aimed at assessing the subsurface or groundwater suitability for human use or consumption depends upon the calculated water quality index values,correlation coefficient and regression analysis.The water quality index(WQI)is main important tool to calculate the characteristics of drinking water quality in rural,urban and industrial area.Different parameters which is measured and determination of the water quality index for selecting parameters.Further to study the correlation and regression method in this research work.Totally fifteen groundwater samples were collected from the Budigumma Village Anantapur district in the state Andhra Pradesh in India.Nine water quality parameters has been considered for the computation of water quality index such as pH,total dissolved solid(TDS),total hardness(TH),calcium(Ca),magnesium(Mg),nitrates(NO3),chlorides(Cl),sulphates(SO4),fluorides(F).The World Health Organization(WHO)has been assessed to the suitability of groundwater for drinking purposes or other uses for public and determining of WQI.This WQI index values ranged from 97.78 to 108.37.The study shows that 87%area comes under the poor category of drinking purposes and the remaining 13%comes under as good water for drinking purposes as per the WQI classification.The correlation and regression analysis gives as an outstanding device for the calculation of different parameter values within realistic degree of precision.The subsistence of strong correlation or relationship between the total hardness and magnesium is determined.The analysis of selected parameters revealed that proper treatment before use or consumption and protected from more contamination.展开更多
基金the Postgraduate Innovation Fund project of Anhui University of Science and Technology(2019CX2006)the National Natural Science Foundation of China(41773100)+1 种基金a Research Project of Huaibei Mining Group Co.(2020)a Research Project of Wanbei Coal-Electricity Group Co.,Ltd.(2020).
文摘The aim of this study is to evaluate the hydrogeochemical characteristics and water environmental quality of shallow groundwater in the Suxian mining area of Huaibei coalfield,China.The natural formation process of shallow groundwater in Suxian is explored using Piper trilinear charts and Gibbs diagrams,and by examining the ratios between the major ions.United States Salinity Laboratory(USSL)charts,Wilcox diagrams,and the water quality index(WQI)are further employed to quantify the differences in water quality.The results reveal that the main hydrochemical facies of groundwater are HC03-Ca,and that silicate dissolution is the main factor controlling the ion content in shallow groundwater.The USSL charts and Wilcox diagrams show that most of the water samples would be acceptable for use in irrigation systems.The WQI results for each water sample are compared and analyzed,and the quality of groundwater samples around collapse ponds is found to be relatively poor.
文摘The main aim of this research is to evaluate the water quality of King Abdullah Canal (KAC) using the water quality index method (WQI). For this purpose, nine different sampling sites were used in the calculation of WQI during the period of January to December 2012. The samples were analyzed for various physico-chemical parameters such as pH, electrical conductivity, total suspended solids, ions of Sodium, Potassium, Calcium, Magnesium, Fluorite, Chloride, Sulfate, Bicarbonate, and Nitrate in different seasons (winter, spring, summer and autumn). The analyzed results (by WQI method) have been used to suggest models for predicting water quality. The relative weight assigned to each parameter has a range from 1 to 5, based on the important parameters for drinking purposes. The computed WQI for the nine samples has a range from 46.66 to 542.08. The analysis reveals that the water quality status of the study area is varying from excellent to good in the upper part of the canal and from poor to very poor in the lower part of the canal. Comparing with the World Health Organization (WHO) and Jordan Standard (JS), the results indicate that the lower part of the canal is polluted. Therefore, the water is not safe for domestic use and needs further treatment, especially in the lower part of the canal.
文摘In Japan, various countermeasures have been taken to improve the water quality of public waters such as rivers and lakes. Though water quality has improved, it is still insufficient. In summer, eutrophication is seen in lakes and inner bays, as well as rivers. As a countermeasure to prevent eutrophication, the removal treatment of nutrient salts such as nitrogen and phosphorus is done, in addition to organic substance elimination in the domestic sewerage system. This report will show the water quality characteristics of rivers and ponds in Japan. It is considered that these investigative results are effective when the water quality improvement of the stabilization ponds where eutrophication occurs are examined in China.
文摘The study analysed the spatial and temporal contamination levels of fresh water resources by saline intrusion in the Douala coastal area. Water samples were collected from 19 stations. 3 stations were selected from the mangrove area and 16 stations were selected from the rest of the area partitioned into four transects (coastal transect, inner transect 1, inner transect 2 and inner transect 3). Sampling was done repeatedly during the wet and dry seasons. They were analyzed for physico-chemical parameters according to the American Public Health Association methods. Geostatistical analysis was used in mapping the water properties. Considerable levels of actual electrical conductivity values (208.91 to 660.63 and 45 to 7540 μS/cm for the wet and dry seasons, respectively);calcium (0.06 to 85 and 4 to 256 mg/L for the wet and dry seasons, respectively);sulphate (0 to 103 and 0 to 99 mg/L for the wet and dry seasons) and total dissolved solids (15.79 to 1467 and 20 to 3750 mg/L for the wet and dry seasons, respectively) were observed for ground water in the study area based on spatio-temporal assessment. From the output grid, it could be deduced that the south eastern region had a hint of salt water intrusion (SWI) contamination of fresh water resources with actual value highs of electrical conductivity (1790 and 820 μS/cm) for the dry and wet seasons, respectively. Calcium highs (140 and 16 mg/L) for the dry and wet seasons were obtained at the central part of the study area. The spatial distribution of calcium highs extends from the central zone of the study area in the dry season and the south eastern zone in the wet season. The southern region is more vulnerable to contamination by calcium ions during this season. An up to date scope for surveillance monitoring and forecasting regarding the deterioration of coastal aquifers is recommended. Modelling of aquifers shifts for the coastal zone should be instituted as a means of ensuring efficient fresh water resources evaluation and utilization. An indepth study of the geochemical characteristics of ground water of the coastal zone could determine factors that most significantly impact on fresh water resource quality.
文摘Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous types and complex composition.In addition,it can pollute soil,surface water and groundwater.In this study,the quality and pollution characteristics of gas field water in eastern Sichuan were studied by conventional water quality determination and GC-MS.The results show that the main components of gas field water in eastern Sichuan were chloride,COD Cr,SS,anionic surfactant,sulfide and other substances.The gas field water could be divided into two types according to the characteristics of water quality,of which one had high mineralization and high organic compounds,and the other had high sulfur and high organic compounds.There were 17 kinds of organic pollutants in the gas field water,mainly including alkanes,alcohols,esters and a small amount of acids.
文摘In order to comprehensively understand the water quality in Yinma River Basin,and to analyze the spatial-temporal variation characteristics of water quality over the years and the causes of water pollution,15 sections were selected in the Yinma River Basin.Based on the water quality monitoring data in the past decade,7 evaluation indexes including dissolved oxygen(DO),5-day biochemical oxygen demand(BOD_(5)),permanganate index(COD_(MN)),chemical oxygen demand(COD),ammonia nitrogen(NH_(4)-N),total phosphorus(TP)and total nitrogen(TN)were determined,according to the Environmental Quality Standard for Surface Water(GB3838-2002)and the historical monitoring data of rivers.The water quality of 15 sections in Yinma River Basin was comprehensively evaluated,and the water quality categories and the evolution of river water quality were analyzed.The pollution sources of Yinma River Basin were analyzed,and the constructive countermeasures were put forward according to the conclusions.
文摘As an important river in the central part of Jilin Province, the Yinma River plays a crucial role in the daily lives of the people in Jilin Province. In this paper, 15 cross sections were selected in the Yinma River basin. Based on the water quality monitoring data from 2012 to 2021, referring to the Environmental Quality Standards for Surface Water (GB 3838-2002) and historical monitoring data of the river, dissolved oxygen (DO), five-day biochemical oxygen demand (BOD 5), permanganate index (COD Mn ), chemical oxygen demand (COD), ammonia nitrogen (NH 4-N), total phosphorus (TP), and total nitrogen (TN) were determined as 7 evaluation indicators, and the water quality of 15 cross sections in the Yinma River basin was comprehensively evaluated. A characteristic analysis was conducted on the water quality of the Yinma River, and its pollution sources were identified. Based on the conclusions, constructive control measures were proposed.
基金supported by the National Natural Science Foundation of China(41572240)
文摘Groundwater utilization and protection are crucial for sustainable urban development. This is especially true for Beijing, where groundwater is an important source for urban water supply. In this study, statistical methods, including descriptive statistics, correlation analysis, principal component analysis, and Piper-Tri-linear diagram, were used in analyzing the temporal and spatial variations of the hydrochemical characteristics of groundwater based on monitored data from the southern plain of Beijing, China. Results indicated consistent changes of groundwater's hydrochemical characteristics in different aquifers in the study area. The percentage of HCO_3^-in total anion increased significantly in the groundwater, and hydrochemical water type evolved gradually from Ca-Mg-Cl-SO_4 based to Ca-Mg-HCO_3 based from period 2005-2007 to period 2013-2015. In shallow groundwater, the concentration of Na^+, Ca^(2+), SO_4^(2-), HCO_3^-, and total dissolved solids(TDS) increased from period 2005-2007 to period 2013-2015, and the greatest change came from HCO_3^-, rising from 428.93 to 528.96 mgL^(-1). The changes of main ionic concentrations in the deep groundwater were consistent with those in the shallow groundwater for both periods. However, the variations in deep groundwater were less than those in shallow groundwater. The temporal and spatial variations of hydrochemical characteristics reflect the groundwater quality in the study area. This study could facilitate decision-making process on the protection of groundwater resources to ensure its sustainable utilization.
文摘The aim of this work is to evaluate the hydrogeochemical characteristics of groundwater in parts of the lower Benue Through in Nigeria as well as to evaluate the variation in groundwater chemistry data and the suitability of the groundwater for drinking and other domestic purposes.This was based on chemical analyses of 44 water samples from existing wells and boreholes in the study area.From the statistical analysis(wide ranges,median and standard deviation),it is obvious that there are significant variations in the quality/composition of groundwater in the period of sampling.The calculated SAR,Na% and RSC values indicated that the water is of excellent to good quality and is suitable for irrigation.Na and HCO3 are dominant with respect to the chemical composition of the groundwater.On the basis of water chemistry,hydrochemical indices and factor analysis the dominant controls or processes affecting the distribution of geochemical variables in the study area have been shown to be water/rock interaction which is mainly controlled by carbonate and silicate dissolution as well as anthropogenic influence to a lesser extent.Additional processes include cation exchange reactions and reverse ion exchange to a minor extent.
基金National Natural Science Foundation of China No.40131020+4 种基金 No.40173030 Key Project for Basic Research of Shanghai No.02DJ14029 Project Foundation for Excellent Young Teachers of the Ministry of Education of China Ration Research of Phosphorus and
文摘Forty middle and small rivers in three towns of Fengjing, Songjiang and Zhujiajiao of suburban Shanghai were chosen as sampling sites for water quality research. Measurement results of DO, CODCr, TP, TN and so on show that the rivers are under heavy eutropic conditions, which are several times greater than the critical values of the worst level (Type V) of water. Water pollution situation has different temporal and spatial characteristics. Non-point pollution, such as village domestic sewage, farmland runoff, livestock feces, has become the primary source of pollution of the middle and small rivers in suburban Shanghai.
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)Hundred-Thousand-Ten-Thousand Talents Project of Beijing(Grant No.2020A28)+1 种基金National Social Science Fund of China(Grant No.19BGL184)Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01).
文摘Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.
文摘This study focused on analysis of the chemical characteristics of mine waters. The aim of this study is to correlate the degree of different ionic components in mine water and the influence of their convergence using a combination of the three-scale AHP and fuzzy evaluation methods for the comprehensive evaluation of water quality. Ion chromatography (ICS 1100) has been used to analyze the content of the water sample while portable pH/EC/TDS/Tem- perature meters (SX 811 and SX 813) were used to test physical-chemical parameters. The results of this study show that chemistry of in No.11 gushing mine is dominated by HCO3-Na and HCO3-Ca, and had a pH between 7.1 and 8.00, belonging to neutral or slightly alkaline water. In addition, water were found to have the hardness between 18 mg/L and 542.5 mg/L. Results also show that the TDS of the roof sandstone and goaves water are higher than Cambrian limestone water, while the turbidity of the mixed water is 20 NTU in the sump, again higher than in other samples such as Cambrian limestone water. Total dissolved solids and the total hardness of Cambrian limestone groundwater mainly depend on the content of K+ + Na+, Ca2+, B={b1,b2,…,bj} and SO2-4. Thus, chemical composition changes remarkably after mine water mixing. Results showed that the coal roof sandstone water is class V while that in the sump is class III, and the Cambrian limestone groundwater is class I. In gushing, the quality of water can vary greatly;thus, water from the coal face roof sandstone and the Cambrian limestone should be stored and treated separately before being utilized.
基金supported by the State Key Laboratory of Cryospheric Science of China(SKLCS-ZZ-2022)the National Key Research and Development Research and Development Program of China(2020YFF0304400)the Third Scientific Expedition in Xinjiang Uygur Autonomous Region of China(2022xjkk0701).
文摘Analysis of environmental significance and hydrochemical characteristics of river water in mountainous regions is vital for ensuring water security.In this study,we collected a total of 164 water samples in the western region of the Altay Mountains,China,in 2021.We used principal component analysis and enrichment factor analysis to examine the chemical properties and spatiotemporal variations of major ions(including F-,Cl-,NO_(3)-,SO_(4)^(2-),Li+,Na+,NH4+,K+,Mg^(2+),and Ca^(2+))present in river water,as well as to identify the factors influencing these variations.Additionally,we assessed the suitability of river water for drinking and irrigation purposes based on the total dissolved solids,soluble sodium percentage,sodium adsorption ratio,and total hardness.Results revealed that river water had an alkaline aquatic environment with a mean pH value of 8.00.The mean ion concentration was ranked as follows:Ca^(2+)>SO_(4)^(2-)>Na+>NO_(3)->Mg^(2+)>K+>Cl->F->NH_(4)+>Li+.Ca^(2+),SO_(4)^(2-),Na+,and NO_(3)-occupied 83%of the total ion concentration.In addition,compared with other seasons,the spatial variation of the ion concentration in spring was obvious.An analysis of the sources of major ions revealed that these ions originated mainly from carbonate dissolution and silicate weathering.The recharge impact of precipitation and snowmelt merely influenced the concentration of Cl-,NO_(3)-,SO_(4)^(2-),Ca^(2+),and Na+.Overall,river water was in pristine condition in terms of quality and was suitable for both irrigation and drinking.This study provides a scientific basis for sustainable management of water quality in rivers of the Altay Mountains.
文摘The aim of this research was to analyze physical and chemical characteristics of high altitude lakes (Gokyo lake series, Imja lake, Pyramid lake) of the Sagarmatha National Park, Khumbu region located above 4500 m altitude. The lake water was studied for three years (2008, 2009 and 2010) to compare the annual changes in the parameters. The findings created a database for present status of high land lakes of Nepal, which can be used for the management of lakes as well as to study the impact of tourism on water quality. The lake water quality in general still stands good in terms of standards for drinking water (WHO, Nepal standard) but degradation process has started. Total nitrogen in water samples was lower than the WHO standard but an increase in the nitrate nitrogen has been recorded. Similarly, total phosphorrous quality was also found increased.
基金Under the auspices of the National Natural Science Foundation of China(No.49671017).
文摘ABSTRACT: Spectrum analyses of water quality time series have been carried out for five hydrometric stations including Wuhan hydrometric station of the Changjiang( Yangtze) River, etc. The fluctuations of Ca2 +, Mg2+ and HCO3-concentrations in river water under different physical geography conditions have about two-year cycle which is corresponding to hydrometeorological quasi-biannual-oscillation(QBO). Na + Cl- SO2-4 have about two-year cycle in the area lightly affected by human activities while two-year cycle doesn’t exist in the area heavily affected by human activities. All the fluctuations of major ions have about three-month cycle. The river discharge fluctuation accounts for 43. 9% , 45.1%, 54.3%, 33.9%, 30.3% and 42. 7% of the variance of Ca2 +, Mg2+ HC03-, Na+ Cl-, SO2-4, respectively, at Wuhan from 1962 to 1985. According to the spectrum characteristic of major ions, the duration of the time series has to be at least 13 years for trend analysis of monthly water quality data.
文摘Based on the monitoring results of environmental quality of the waters near the Oujiang River estuary from 2010 to 2017,the present situation of environmental quality of the waters was analyzed and evaluated.The results showed that pH,DO,COD Mn ,petroleum,and heavy metal (Cu,Pb,Zn,Cd,Hg,As and Cr) content in the waters near the Oujiang River estuary did not exceed the second-class standard of Seawater Quality Standard (GB 3097-1997),while both inorganic nitrogen and reactive phosphate in the waters greatly exceeded the second-class standard.The water quality near the Oujiang River estuary was in an eutrophic state.In terms of sediment quality,the standard index of most evaluation factors except for Cu was smaller than 1,meeting the demands of sediment quality for environmental protection.
文摘Safe and reliable drinking water availability constitutes a nightmare in many towns of developing countries and is usually appreciated from its physical appearance without prior knowledge of its chemical and biological properties. This study investigates the suitability of groundwater for domestic and irrigational purposes through physico-chemical and bacteriological analyses in the Northern part of Bamenda Town (Cameroon). Thus, 20 groundwater samples were collected from hand-dug wells and spring sources in September 2018 (rainy season) and February 2019 (dry season) and physico-chemical and bacteriological characteristics were determined. The results revealed that pH ranged from 5.5 to 6.6, thus enabling the classification of the water as slightly acidic. Electrical conductivity varied between 0.01 - 0.06 μS/cm. The relative abundance of ions was such that Ca<sup>2+</sup> > K<sup>+</sup> > Mg<sup>2+</sup> > Na<sup>+</sup> for cations and <span style="white-space:nowrap;">HCO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > Cl<sup>-</sup> > <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub></span> > <span style="white-space:nowrap;">SO<sup>-</sup><sub style="margin-left:-7px;">4</sub></span> for anions. The water types were Ca-Mg-NO<sub>3</sub> in both dry and rainy seasons. The results revealed that the mechanisms controlling groundwater chemistry are rock weathering and atmospheric precipitation. Indicator bacteria such as <em>E. coli</em>, <em>Shigella</em>, <em>Enterobacteria</em>, <em>Vibrio</em>, <em>Streptococcus</em> and <em>Staphylococcus</em> were detected in the studied groundwater samples, thus the water sources may pose a threat to public health.
文摘Selected results of research connected with the development of a (3D) geostatistical hydrogeocbemical model of the Klodzko city area, dedicated to the spatial and time variation in the quality parameters in the Klodzko water supply system (SW part of Poland) have been presented. The research covers the period 2007-2011. Spatial analyses of the variation in three quality parameters, i.e. Fe iron (g/m3) content, Mn manganese (g/m3) content and NI-I4+ ammonium ion (g/m3) content, were carried out. Spatial and time variation in the parameters was analyzed on the basis of the data (2007-2011). The input for the studies was the chemical determinations of the quality parameters of water samples taken in the Klodzko water supply system area (also treated water) in different periods of time. These data were subjected to spatial analyses using geostatistical methods. The parameters of the assumed theoretical models of directional semivariograms functions of the studied regionalized variables, were used in the ordinary (block) kriging estimation. Generally, the behaviour of the quality parameters in the Klodzko water supply system has been found to vary in space and time. Thanks to the multivariate spatial analyses some regularities in the variation in the water supply system in the Klodzko city area have been identified. In the considered time interval, the shapes of the directional Fe iron content semivariogram show a tendency to vary periodically. The courses of the directional semivariograms of Mn manganese content and NI-I4+ ammonium ion content show some tendencies towards directional variation over the passing years. There are visible distinct increasing trends of variability for Mn content and stronger variation are observed for NH4+ ion content. The kriging estimation results were used to determine the levels of elevated values 2* of the water quality parameters in the years 2007-2011 and to forecast these values for the years 2012-2014. The maximum values Z* of the quality parameters were stated for the years: 2007, 2008-2009 and 2012 (the decreasing trend in Fe iron content averages Z* variation towards the year 2012, the increasing trend in Mn content averages Z* variation towards the year 2012 and the increasing trend in NH4+ ion content averages Z* variation towards the years 2008-2009 and then the decreasing trend towards the year 2012).
文摘The research work is aimed at assessing the subsurface or groundwater suitability for human use or consumption depends upon the calculated water quality index values,correlation coefficient and regression analysis.The water quality index(WQI)is main important tool to calculate the characteristics of drinking water quality in rural,urban and industrial area.Different parameters which is measured and determination of the water quality index for selecting parameters.Further to study the correlation and regression method in this research work.Totally fifteen groundwater samples were collected from the Budigumma Village Anantapur district in the state Andhra Pradesh in India.Nine water quality parameters has been considered for the computation of water quality index such as pH,total dissolved solid(TDS),total hardness(TH),calcium(Ca),magnesium(Mg),nitrates(NO3),chlorides(Cl),sulphates(SO4),fluorides(F).The World Health Organization(WHO)has been assessed to the suitability of groundwater for drinking purposes or other uses for public and determining of WQI.This WQI index values ranged from 97.78 to 108.37.The study shows that 87%area comes under the poor category of drinking purposes and the remaining 13%comes under as good water for drinking purposes as per the WQI classification.The correlation and regression analysis gives as an outstanding device for the calculation of different parameter values within realistic degree of precision.The subsistence of strong correlation or relationship between the total hardness and magnesium is determined.The analysis of selected parameters revealed that proper treatment before use or consumption and protected from more contamination.