To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t...In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.展开更多
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently...Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
Detailed information on the spatio-temporal changes of cropland soil organic carbon(SOC) can significantly contribute to the improvement of soil fertility and mitigate climate change. Nonetheless, information and know...Detailed information on the spatio-temporal changes of cropland soil organic carbon(SOC) can significantly contribute to the improvement of soil fertility and mitigate climate change. Nonetheless, information and knowledge on the national scale spatio-temporal changes and the corresponding uncertainties of SOC in Chinese upland soils remain limited. The CENTURY model was used to estimate the SOC storages and their changes in Chinese uplands from 1980 to 2010. With the Monte Carlo method, the uncertainties of CENTURY-modelled SOC dynamics associated with the spatial heterogeneous model inputs were quantified. Results revealed that the SOC storage in Chinese uplands increased from 3.03(1.59 to 4.78) Pg C in 1980 to 3.40(2.39 to 4.62) Pg C in 2010. Increment of SOC storage during this period was 370 Tg C, with an uncertainty interval of –440 to 1110 Tg C. The regional disparities of SOC changes reached a significant level, with considerable SOC accumulation in the Huang-Huai-Hai Plain of China and SOC loss in the northeastern China. The SOC lost from Meadow soils, Black soils and Chernozems was most severe, whilst SOC accumulation in Fluvo-aquic soils, Cinnamon soils and Purplish soils was most significant. In modelling large-scale SOC dynamics, the initial soil properties were major sources of uncertainty. Hence, more detailed information concerning the soil properties must be collected. The SOC stock of Chinese uplands in 2010 was still relatively low, manifesting that recommended agricultural management practices in conjunction with effectively economic and policy incentives to farmers for soil fertility improvement were indispensable for future carbon sequestration in these regions.展开更多
The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-tempora...The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-temporal data, using the combined data structure on linear quadtree and linear octree to code. The advantage of this model is that it can easily obtain the information of certain layer and integratedly analyze the data with other methods. Then, the methods of obtain and analyses are introduced. The method can provide a tool for the research of the soil characteristic change and spatial distribution in reclamation land.展开更多
The present work is related to the numerical investigation of the spatio-temporal susceptible-latent-breaking out-recovered(SLBR)epidemic model.It describes the computer virus dynamics with vertical transmission via t...The present work is related to the numerical investigation of the spatio-temporal susceptible-latent-breaking out-recovered(SLBR)epidemic model.It describes the computer virus dynamics with vertical transmission via the internet.In these types of dynamics models,the absolute values of the state variables are the fundamental requirement that must be fulfilled by the numerical design.By taking into account this key property,the positivity preserving algorithm is designed to solve the underlying SLBR system.Since,the state variables associated with the phenomenon,represent the computer nodes,so they must take in absolute.Moreover,the continuous system(SLBR)acquires two steady states i.e.,the virus-free state and the virus existence state.The stability of the numerical design,at the equilibrium points,portrays an exceptional aspect about the propagation of the virus.The designed discretization algorithm sustains the stability of both the steady states.The computer simulations also endorse that the proposed discretization algorithm retains all the traits of the continuous SLBR model with spatial content.The stability and consistency of the proposed algorithm are verified,mathematically.All the facts are also ascertained by numerical simulations.展开更多
By using correlation analysis method,regression analysis method and time sequence method,we combine time and space,to establish grain yield spatio-temporal regression prediction model of Henan Province and all prefect...By using correlation analysis method,regression analysis method and time sequence method,we combine time and space,to establish grain yield spatio-temporal regression prediction model of Henan Province and all prefecture-level cities.At first,we use the grain yield in prefecture-level cities of Henan in the year 2000 and 2005,to establish regression model,and then taking the grain yield in one year as independent variable,we predict the grain yield in the fifth year afterwards.Taking the dependent variable value as independent variable again,we predict the grain yield at an interval of the same years,and based on this,predict year by year forward until the year we need.The research shows that the grain yield of Henan Province in the year 2015 and 2020 is 59.849 6 and 67.929 3 million t respectively,consistent with the research results of other scholars to some extent.展开更多
Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tan...Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models is compared by Akalke Information Criterion. The spatial clustering pattern is well characterized by the model which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and compared with the real seismicity.展开更多
Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
Source localization of focal electrical activity from scalp electroencephalogram (sEEG) signal is generally modeled as an inverse problem that is highly ill-posed. In this paper, a novel source localization method is ...Source localization of focal electrical activity from scalp electroencephalogram (sEEG) signal is generally modeled as an inverse problem that is highly ill-posed. In this paper, a novel source localization method is proposed to model the EEG inverse problem using spatio-temporal long-short term memory recurrent neural networks (LSTM). The network model consists of two parts, sEEG encoding and source decoding, to model the sEEG signal and receive the regression of source location. As there does not exist enough annotated sEEG signals correspond to specific source locations, simulated data is generated with forward model using finite element method (FEM) to act as a part of training signals. A framework for source localization is proposed to estimate the source position based on simulated training data. Experiments are done on simulated testing data. The results on simulated data exhibit good robustness on noise signal, and the proposed network solves the EEG inverse problem with spatio-temporal deep network. The result show that the proposed method overcomes the highly ill-posed linear inverse problem with data driven learning.展开更多
This study focused on the quantitative evaluation of the impact of the spatio-temporal scale used in data collection and grouping on the standardization of CPUE(catch per unit effort).We used the Chinese squid-jigging...This study focused on the quantitative evaluation of the impact of the spatio-temporal scale used in data collection and grouping on the standardization of CPUE(catch per unit effort).We used the Chinese squid-jigging fishery in the northwestern Pacific Ocean as an example to evaluate 24 scenarios at different spatio-temporal scales,with a combination of four levels of temporal scale(weekly,biweekly,monthly,and bimonthly)and six levels of spatial scale(longitude×latitude:0.5°×0.5°,0.5°×1°,0.5°×2°,1°×0.5°,1°×1°,and 1°×2°).We applied generalized additive models and generalized linear models to analyze the24 scenarios for CPUE standardization,and then the differences in the standardized CPUE among these scenarios were quantified.This study shows that combinations of different spatial and temporal scales could have different impacts on the standardization of CPUE.However,at a fine temporal scale(weekly)different spatial scales yielded similar results for standardized CPUE.The choice of spatio-temporal scale used in data collection and analysis may create added uncertainty in fisheries stock assessment and management.To identify a cost-effective spatio-temporal scale for data collection,we recommend a similar study be undertaken to facilitate the design of effective monitoring programs.展开更多
Spatio-temporal variation of actual evapotranspiration(ETa) in the Pearl River basin from 1961 to 2010 are analyzed based on daily data from 60 national observed stations. ETa is calculated by the Advection-Aridity mo...Spatio-temporal variation of actual evapotranspiration(ETa) in the Pearl River basin from 1961 to 2010 are analyzed based on daily data from 60 national observed stations. ETa is calculated by the Advection-Aridity model(AA model) in the current study, and Mann-Kendall test(MK) and Inverse Distance Weighted interpolation method(IDW)were applied to detect the trends and spatial variation pattern. The relations of ETa with climate parameters and radiation/dynamic terms are analyzed by Person correlation method. Our findings are shown as follows: 1) Mean annual ETa in the Pearl River basin is about 665.6 mm/a. It has significantly decreased in 1961-2010 at a rate of-24.3mm/10 a. Seasonally, negative trends of summer and autumn ETa are higher than that of spring and winter. 2) The value of ETa is higher in the southeast coastal area than in the northwest region of the Pearl River basin, while the latter has shown the strongest negative trend. 3) Negative trends of ETa in the Pearl River basin are most probably due to decreasing radiation term and increasing dynamic term. The decrease of the radiation term is related with declining diurnal temperature range and sunshine duration, and rising atmospheric pressure as well. The contribution of dynamic term comes from increasing average temperature, maximum and minimum temperatures in the basin. Meanwhile, the decreasing average wind speed weakens dynamic term and finally, to a certain extent, it slows down the negative trend of the ETa.展开更多
Modeling plays an important role for the solution of the complex research problems. When the database became large and complex then it is necessary to create a unified model for getting the desired information in the ...Modeling plays an important role for the solution of the complex research problems. When the database became large and complex then it is necessary to create a unified model for getting the desired information in the minimum time and to implement the model in a better way. The present paper deals with the modeling for searching of the desired information from a large database by storing the data inside the three dimensional data cubes. A sample case study is considered as a real data related to the ground water and municipal water supply, which contains the data from the various localities of a city. For the demonstration purpose, a sample size is taken as nine but when it becomes very large for number of localities of different cities then it is necessary to store the data inside data cubes. A well known object-oriented Unified Modeling Language (UML) is used to create Unified class and state models. For verification purpose, sample queries are also performed and corresponding results are depicted.展开更多
Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and ...Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and spatio-temporal random effects. Model fitting and statistical inference are commonly accomplished through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB approach usually relies on the penalized quasi-likelihood (PQL), while the FB approach, which has increasingly become more popular in the recent past, usually uses Markov chain Monte Carlo (McMC) techniques. However, there are many challenges in conventional use of posterior sampling via McMC for inference. This includes the need to evaluate convergence of posterior samples, which often requires extensive simulation and can be very time consuming. Spatio-temporal models used in disease mapping are often very complex and McMC methods may lead to large Monte Carlo errors if the dimension of the data at hand is large. To address these challenges, a new strategy based on integrated nested Laplace approximations (INLA) has recently been recently developed as a promising alternative to the McMC. This technique is now becoming more popular in disease mapping because of its ability to fit fairly complex space-time models much more quickly than the McMC. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with McMC using Kenya HIV incidence data during the period 2013-2016.展开更多
Due to the interactions among coupled spatio-temporal subsystems and the constant bias term of affine chaos, it is difficult to achieve tracking control for the affine coupled spatiotemporal chaos. However, every subs...Due to the interactions among coupled spatio-temporal subsystems and the constant bias term of affine chaos, it is difficult to achieve tracking control for the affine coupled spatiotemporal chaos. However, every subsystem of the affine coupled spatio-temporal chaos can be approximated by a set of fuzzy models; every fuzzy model represents a linearized model of the subsystem corresponding to the operating point of the controlled system. Because the consequent parts of the fuzzy models have a constant bias term, it is very difficult to achieve tracking control for the affine system. Based on these fuzzy models, considering the affine constant bias term, an H∞ fuzzy tracking control scheme is proposed. A linear matrix inequality is employed to represent the feedback controller, and parameters of the controller are achieved by convex optimization techniques. The tracking control for the affine coupled spatio-temporal chaos is achieved, and the stability of the system is also guaranteed. The tracking performances are testified by simulation examples.展开更多
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
文摘In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution.
基金supported by the National Key Basic Research and Development Program of China under contract No.2006CB701305the National Natural Science Foundation of China under coutract No.40571129the National High-Technology Program of China under contract Nos 2002AA639400,2003AA604040 and 2003AA637030.
文摘Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0603002)National Natural Science Foundation of China(No.31800358,31700369)+1 种基金Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(19)3099)the Foundation of Jiangsu Vocational College of Agriculture and Forestry(No.2019kj014)。
文摘Detailed information on the spatio-temporal changes of cropland soil organic carbon(SOC) can significantly contribute to the improvement of soil fertility and mitigate climate change. Nonetheless, information and knowledge on the national scale spatio-temporal changes and the corresponding uncertainties of SOC in Chinese upland soils remain limited. The CENTURY model was used to estimate the SOC storages and their changes in Chinese uplands from 1980 to 2010. With the Monte Carlo method, the uncertainties of CENTURY-modelled SOC dynamics associated with the spatial heterogeneous model inputs were quantified. Results revealed that the SOC storage in Chinese uplands increased from 3.03(1.59 to 4.78) Pg C in 1980 to 3.40(2.39 to 4.62) Pg C in 2010. Increment of SOC storage during this period was 370 Tg C, with an uncertainty interval of –440 to 1110 Tg C. The regional disparities of SOC changes reached a significant level, with considerable SOC accumulation in the Huang-Huai-Hai Plain of China and SOC loss in the northeastern China. The SOC lost from Meadow soils, Black soils and Chernozems was most severe, whilst SOC accumulation in Fluvo-aquic soils, Cinnamon soils and Purplish soils was most significant. In modelling large-scale SOC dynamics, the initial soil properties were major sources of uncertainty. Hence, more detailed information concerning the soil properties must be collected. The SOC stock of Chinese uplands in 2010 was still relatively low, manifesting that recommended agricultural management practices in conjunction with effectively economic and policy incentives to farmers for soil fertility improvement were indispensable for future carbon sequestration in these regions.
文摘The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-temporal data, using the combined data structure on linear quadtree and linear octree to code. The advantage of this model is that it can easily obtain the information of certain layer and integratedly analyze the data with other methods. Then, the methods of obtain and analyses are introduced. The method can provide a tool for the research of the soil characteristic change and spatial distribution in reclamation land.
文摘The present work is related to the numerical investigation of the spatio-temporal susceptible-latent-breaking out-recovered(SLBR)epidemic model.It describes the computer virus dynamics with vertical transmission via the internet.In these types of dynamics models,the absolute values of the state variables are the fundamental requirement that must be fulfilled by the numerical design.By taking into account this key property,the positivity preserving algorithm is designed to solve the underlying SLBR system.Since,the state variables associated with the phenomenon,represent the computer nodes,so they must take in absolute.Moreover,the continuous system(SLBR)acquires two steady states i.e.,the virus-free state and the virus existence state.The stability of the numerical design,at the equilibrium points,portrays an exceptional aspect about the propagation of the virus.The designed discretization algorithm sustains the stability of both the steady states.The computer simulations also endorse that the proposed discretization algorithm retains all the traits of the continuous SLBR model with spatial content.The stability and consistency of the proposed algorithm are verified,mathematically.All the facts are also ascertained by numerical simulations.
基金Supported by Philosophical Social Sciences Research Project of Jiangsu Colleges(08SJD7900055)
文摘By using correlation analysis method,regression analysis method and time sequence method,we combine time and space,to establish grain yield spatio-temporal regression prediction model of Henan Province and all prefecture-level cities.At first,we use the grain yield in prefecture-level cities of Henan in the year 2000 and 2005,to establish regression model,and then taking the grain yield in one year as independent variable,we predict the grain yield in the fifth year afterwards.Taking the dependent variable value as independent variable again,we predict the grain yield at an interval of the same years,and based on this,predict year by year forward until the year we need.The research shows that the grain yield of Henan Province in the year 2015 and 2020 is 59.849 6 and 67.929 3 million t respectively,consistent with the research results of other scholars to some extent.
基金supported by National Natural Science of Foundation of China(No.10871026)
文摘Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models is compared by Akalke Information Criterion. The spatial clustering pattern is well characterized by the model which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and compared with the real seismicity.
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
基金supported by the National Natural Science Foundation of China (No. 61672070, 61501007, 11675199, 61572004 and 81501155)the Key Project of Beijing Municipal Education Commission (No. KZ201910005008)+3 种基金general project of science and technology project of Beijing Municipal Education Commission (No. KM201610005023)the Beijing Municipal Natural Science Foundation (No. 4182005)Clinical Technology Innovation Program of Beijing Municipal Administration of Hospitals (No. XMLX201805)Beijing Municipal Science & Tech Commission (No. Z171100000117004)
文摘Source localization of focal electrical activity from scalp electroencephalogram (sEEG) signal is generally modeled as an inverse problem that is highly ill-posed. In this paper, a novel source localization method is proposed to model the EEG inverse problem using spatio-temporal long-short term memory recurrent neural networks (LSTM). The network model consists of two parts, sEEG encoding and source decoding, to model the sEEG signal and receive the regression of source location. As there does not exist enough annotated sEEG signals correspond to specific source locations, simulated data is generated with forward model using finite element method (FEM) to act as a part of training signals. A framework for source localization is proposed to estimate the source position based on simulated training data. Experiments are done on simulated testing data. The results on simulated data exhibit good robustness on noise signal, and the proposed network solves the EEG inverse problem with spatio-temporal deep network. The result show that the proposed method overcomes the highly ill-posed linear inverse problem with data driven learning.
基金Supported by Shanghai Universities First-class Disciplines Project,Discipline name:Fisheries(A),the National Natural Science Foundation of China(No.NSFC41276156)the National High Technology Research and Development Program of China(863 Program)(No.2012AA092303)+1 种基金the Shanghai Science and Technology Innovation Program(No.12231203900)CHEN Yong’s involvement was supported by the Shanghai Ocean University
文摘This study focused on the quantitative evaluation of the impact of the spatio-temporal scale used in data collection and grouping on the standardization of CPUE(catch per unit effort).We used the Chinese squid-jigging fishery in the northwestern Pacific Ocean as an example to evaluate 24 scenarios at different spatio-temporal scales,with a combination of four levels of temporal scale(weekly,biweekly,monthly,and bimonthly)and six levels of spatial scale(longitude×latitude:0.5°×0.5°,0.5°×1°,0.5°×2°,1°×0.5°,1°×1°,and 1°×2°).We applied generalized additive models and generalized linear models to analyze the24 scenarios for CPUE standardization,and then the differences in the standardized CPUE among these scenarios were quantified.This study shows that combinations of different spatial and temporal scales could have different impacts on the standardization of CPUE.However,at a fine temporal scale(weekly)different spatial scales yielded similar results for standardized CPUE.The choice of spatio-temporal scale used in data collection and analysis may create added uncertainty in fisheries stock assessment and management.To identify a cost-effective spatio-temporal scale for data collection,we recommend a similar study be undertaken to facilitate the design of effective monitoring programs.
基金National Natural Science Foundation of China(41401056,41571494)Research Innovation Program for College Graduates of Jiangsu Province(KYLX15_0858)
文摘Spatio-temporal variation of actual evapotranspiration(ETa) in the Pearl River basin from 1961 to 2010 are analyzed based on daily data from 60 national observed stations. ETa is calculated by the Advection-Aridity model(AA model) in the current study, and Mann-Kendall test(MK) and Inverse Distance Weighted interpolation method(IDW)were applied to detect the trends and spatial variation pattern. The relations of ETa with climate parameters and radiation/dynamic terms are analyzed by Person correlation method. Our findings are shown as follows: 1) Mean annual ETa in the Pearl River basin is about 665.6 mm/a. It has significantly decreased in 1961-2010 at a rate of-24.3mm/10 a. Seasonally, negative trends of summer and autumn ETa are higher than that of spring and winter. 2) The value of ETa is higher in the southeast coastal area than in the northwest region of the Pearl River basin, while the latter has shown the strongest negative trend. 3) Negative trends of ETa in the Pearl River basin are most probably due to decreasing radiation term and increasing dynamic term. The decrease of the radiation term is related with declining diurnal temperature range and sunshine duration, and rising atmospheric pressure as well. The contribution of dynamic term comes from increasing average temperature, maximum and minimum temperatures in the basin. Meanwhile, the decreasing average wind speed weakens dynamic term and finally, to a certain extent, it slows down the negative trend of the ETa.
文摘Modeling plays an important role for the solution of the complex research problems. When the database became large and complex then it is necessary to create a unified model for getting the desired information in the minimum time and to implement the model in a better way. The present paper deals with the modeling for searching of the desired information from a large database by storing the data inside the three dimensional data cubes. A sample case study is considered as a real data related to the ground water and municipal water supply, which contains the data from the various localities of a city. For the demonstration purpose, a sample size is taken as nine but when it becomes very large for number of localities of different cities then it is necessary to store the data inside data cubes. A well known object-oriented Unified Modeling Language (UML) is used to create Unified class and state models. For verification purpose, sample queries are also performed and corresponding results are depicted.
文摘Disease mapping is the study of the distribution of disease relative risks or rates in space and time, and normally uses generalized linear mixed models (GLMMs) which includes fixed effects and spatial, temporal, and spatio-temporal random effects. Model fitting and statistical inference are commonly accomplished through the empirical Bayes (EB) and fully Bayes (FB) approaches. The EB approach usually relies on the penalized quasi-likelihood (PQL), while the FB approach, which has increasingly become more popular in the recent past, usually uses Markov chain Monte Carlo (McMC) techniques. However, there are many challenges in conventional use of posterior sampling via McMC for inference. This includes the need to evaluate convergence of posterior samples, which often requires extensive simulation and can be very time consuming. Spatio-temporal models used in disease mapping are often very complex and McMC methods may lead to large Monte Carlo errors if the dimension of the data at hand is large. To address these challenges, a new strategy based on integrated nested Laplace approximations (INLA) has recently been recently developed as a promising alternative to the McMC. This technique is now becoming more popular in disease mapping because of its ability to fit fairly complex space-time models much more quickly than the McMC. In this paper, we show how to fit different spatio-temporal models for disease mapping with INLA using the Leroux CAR prior for the spatial component, and we compare it with McMC using Kenya HIV incidence data during the period 2013-2016.
文摘Due to the interactions among coupled spatio-temporal subsystems and the constant bias term of affine chaos, it is difficult to achieve tracking control for the affine coupled spatiotemporal chaos. However, every subsystem of the affine coupled spatio-temporal chaos can be approximated by a set of fuzzy models; every fuzzy model represents a linearized model of the subsystem corresponding to the operating point of the controlled system. Because the consequent parts of the fuzzy models have a constant bias term, it is very difficult to achieve tracking control for the affine system. Based on these fuzzy models, considering the affine constant bias term, an H∞ fuzzy tracking control scheme is proposed. A linear matrix inequality is employed to represent the feedback controller, and parameters of the controller are achieved by convex optimization techniques. The tracking control for the affine coupled spatio-temporal chaos is achieved, and the stability of the system is also guaranteed. The tracking performances are testified by simulation examples.