期刊文献+
共找到4,780篇文章
< 1 2 239 >
每页显示 20 50 100
Methods to evaluate the impacts of physio- geographical pattern on spatio-temporal disparity of regional development 被引量:1
1
作者 LI Guosheng GUO Zhaocheng LIAO Heping 《Journal of Geographical Sciences》 SCIE CSCD 2008年第2期225-236,共12页
With the rapid economic development during the last 30 years in China, more and more disparities have emerged among different regions. It has been one of the hot topics in the fields of physical geography and economic... With the rapid economic development during the last 30 years in China, more and more disparities have emerged among different regions. It has been one of the hot topics in the fields of physical geography and economic geography, and also has been the task for Chinese government to handle. Nevertheless, to quantitatively assess the impacts of physio-geographical patterns (PGP) on the regional development disparity has been ignored for a long time. In this paper, a quantitative method was adopted to assess the marginal effects of the PGP on spatio-temporal disparity using the partial determination coefficients. The paper described the construction of the evaluation model step by step following its key scientific thinking. Total GDP, per capita GDP, primary industrial output value and secondary industrial output value were employed in this study as the indicators to reflect the impacts of PGP on the regional development disparity. Based on the evaluation methods built by researchers, this study firstly analyzed the temporal impacts of the PGP on spatio-temporal disparity of the regional development in China during the past 50 years, and then explained the spatial differences at each development stage. The results show that the spatio-temporal disparity in China is highly related to the PGP, and that the marginal contribution rate could be employed as an effective way to quantitatively assess the impact of the PGP on spatio-temporal disparity of the regional development. 展开更多
关键词 physio-geographical pattern regional development spatio-temporal disparity marginal contribution rate
下载PDF
Spatio-Temporal Trend and Geographic Disparity of Infertility Prevalence in Burkina Faso, 2011 to 2020
2
作者 Oumarou Nabi René Tokira Poubouré Yabré +5 位作者 Pratibha Shrestha Aoua Sangaré Jérémie Sawadogo Miézan Brigitte Aka Smaila Ouédraogo Min Lian 《Open Journal of Obstetrics and Gynecology》 2024年第8期1288-1302,共15页
Background: Infertility affected 10% to 25% of couples globally, and about half of the infertility cases were reported in sub-Saharan Africa. Infertility poses significant social, cultural, and health challenges, part... Background: Infertility affected 10% to 25% of couples globally, and about half of the infertility cases were reported in sub-Saharan Africa. Infertility poses significant social, cultural, and health challenges, particularly for women who often face stigmatization. However, comprehensive and nationally representative data, including prevalence, temporal trends, and risk factors, are lacking, prompting a study in Burkina Faso to address the need for informed policies and programs in infertility care and management. Objectives: This study aims to better understand the spatiotemporal trend of infertility prevalence in Burkina Faso. Methodology: This is a retrospective population-based study of women infertility from healthcare facilities in Burkina Faso, during January 2011 to December 2020. We calculated the prevalence rates of infertility and two disparity measures, and examined the spatiotemporal trend of infertility. Results: Over the 10-year period (2011 to 2020), 143,421 infertility cases were recorded in Burkina Faso healthcare facilities, resulting of a mean prevalence rate of 3.61‰ among childbearing age women and 17.87‰ among women who consulted healthcare facilities for reproductive issues (except contraception). The findings revealed a significant increase of infertility, with the prevalence rate varied from 2.75‰ in 2011 to 4.62‰ in 2020 among childbearing age women and from 13.38‰ in 2011 to 26.28‰ in 2020 among women who consulted healthcare facilities for reproductive issues, corresponding to an estimate annual percentage change of 8.31% and 9.80% respectively. There were significant temporal and geographic variations in the prevalence of infertility. While relative geographic disparity decreased, absolute geographic disparity showed an increasing trend over time. Conclusion: The study highlights an increasing trend of infertility prevalence and significant geographic variation in Burkina Faso, underscoring the urgent necessity for etiologic research on risk factors, psychosocial implications, and economic consequences to inform effective interventions and mitigate the socioeconomic impact of infertility. 展开更多
关键词 INFERTILITY PREVALENCE Temporal Trend GEOGRAPHY disparity
下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
3
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation
4
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
5
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
下载PDF
Recent advances in spatio-temporally controllable systems for management of glioma
6
作者 Huiwen Zhang Wanqi Zhu +3 位作者 Wei Pan Xiuyan Wan Na Li Bo Tang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第5期28-53,共26页
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches,including surgery and chemotherapy.Spatio-temp... Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches,including surgery and chemotherapy.Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance,including spatio-temporal adjustability,minimally invasive,repetitive properties,etc.External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues.It is worth noting that the removability of external stimuli allows for on-demand treatment,which effectively reduces the occurrence of side effects.In this review,we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma,focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies.Moreover,the potential challenges regarding spatio-temporally controllable therapy for glioma are also described,aiming to provide insights into future advancements in this field and their potential clinical applications. 展开更多
关键词 Glioma therapy spatio-temporally controllable PHOTOTHERAPY Sonodynamic therapy RADIOTHERAPY Magnetic therapy
下载PDF
Epidemic Characteristics and Spatio-Temporal Patterns of HFRS in Qingdao City,China,2010-2022
7
作者 Ying Li Runze Lu +8 位作者 Liyan Dong Litao Sun Zongyi Zhang Yating Zhao Qing Duan Lijie Zhang Fachun Jiang Jing Jia Huilai Ma 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第9期1015-1029,共15页
Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingda... Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingdao City from 2010 to 2022.Descriptive epidemiologic,seasonal decomposition,spatial autocorrelation,and spatio-temporal cluster analyses were performed.Results A total of 2,220 patients with HFRS were reported over the study period,with an average annual incidence of 1.89/100,000 and a case fatality rate of 2.52%.The male:female ratio was 2.8:1.75.3%of patients were aged between 16 and 60 years old,75.3%of patients were farmers,and 11.6%had both“three red”and“three pain”symptoms.The HFRS epidemic showed two-peak seasonality:the primary fall-winter peak and the minor spring peak.The HFRS epidemic presented highly spatially heterogeneous,street/township-level hot spots that were mostly distributed in Huangdao,Pingdu,and Jiaozhou.The spatio-temporal cluster analysis revealed three cluster areas in Qingdao City that were located in the south of Huangdao District during the fall-winter peak.Conclusion The distribution of HFRS in Qingdao exhibited periodic,seasonal,and regional characteristics,with high spatial clustering heterogeneity.The typical symptoms of“three red”and“three pain”in patients with HFRS were not obvious. 展开更多
关键词 Hemorrhagic fever with renal syndrome Epidemic characteristics spatio-temporal distribution
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
8
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism
9
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
下载PDF
Warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography
10
作者 Pengyu Hu Jiangpeng Wu +3 位作者 Zhengang Yan Meng He Chao Liang Hao Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期162-172,共11页
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it... High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%. 展开更多
关键词 Warhead fragment measurement High speed photography Stereo vision Multi-object tracking spatio-temporal reconstruction
下载PDF
A cloud model target damage effectiveness assessment algorithm based on spatio-temporal sequence finite multilayer fragments dispersion
11
作者 Hanshan Li Xiaoqian Zhang Junchai Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期48-64,共17页
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p... To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis. 展开更多
关键词 Target damage Cloud model Fragments dispersion Effectiveness assessment spatio-temporal sequence
下载PDF
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids
12
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal self-attention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
下载PDF
Disparity estimation for multi-scale multi-sensor fusion
13
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
下载PDF
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
14
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 spatio-temporal prediction infectious diseases graph neural networks
下载PDF
Spatio-Temporal Change of Dispersal Areas of Greater Kudu (Tragelaphus strepsiceros) in Lake Bogoria Landscape, Kenya
15
作者 Beatrice Chepkoech Cheserek George Morara Ogendi Paul Mutua Makenzi 《Open Journal of Ecology》 2024年第3期183-198,共16页
Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last... Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods. 展开更多
关键词 spatio-temporal Change Dispersal Greater Kudu (Tragelaphus Strepsiceros) Point Pattern Analysis (PPA) GIS
下载PDF
Research on the Spatio-Temporal Evolution and Driving Forces of Green Spaces in the Central Urban Area of Zunyi City
16
作者 Juan Du 《Journal of Architectural Research and Development》 2024年第4期8-16,共9页
Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of... Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of the spatial mismatch between high demand and low supply,it is of great significance to clarify the evolution mechanism of green space to undertake national spatial planning,protect the natural strategic resources in the urban fringe area,and promote the sustainable development of the“three living spaces.”The study focuses on the Zunyi City Center,selecting the 20 years of rapid development following its establishment as a city as the study period.It explores the dynamic evolution of green space and the main driving forces during different periods using remote-sensing image data.The study shows that from 2003 to 2023,the total scale of green space has an obvious decreasing trend along with the expansion of the urban built-up area.A large amount of arable land is being converted to construction land,resulting in a sudden decrease in arable land area.In the past 10 years,the comprehensive land use dynamics have accelerated.Still,the spatial difference has gradually narrowed,indicating that the overall development intensity of Zunyi City’s central urban area has increased.There is a gradual spread of the trend to the hilly areas.The limiting effect of the mountainous natural environment on the city’s development has gradually diminished under the superposition of external factors,such as economic development,industrial technological upgrading,and policy orientation so the importance of the effective protection and rational utilization of urban green space has become more prominent. 展开更多
关键词 Green space spatio-temporal evolution Driving force Zunyi city center
下载PDF
Traveling Wave Solutions of a SIR Epidemic Model with Spatio-Temporal Delay
17
作者 Zhihe Hou 《Journal of Applied Mathematics and Physics》 2024年第10期3422-3438,共17页
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t... In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution. 展开更多
关键词 Susceptible-Infected-Recovered Epidemic Model Traveling Wave Solutions spatio-temporal Delay Schauder Fixed Point Theorem
下载PDF
Gender disparities and woman-specific trends in Barrett’s esophagus in the United States:An 11-year nationwide populationbased study
18
作者 Karina Fatakhova Faisal Inayat +12 位作者 Hassam Ali Pratik Patel Attiq Ur Rehman Arslan Afzal Muhammad Sarfraz Shiza Sarfraz Gul Nawaz Ahtshamullah Chaudhry Rubaid Dhillon Arthur Dilibe Benjamin Glazebnik Lindsey Jones Emily Glazer 《World Journal of Methodology》 2025年第1期60-71,共12页
BACKGROUND Barrett's esophagus(BE)is a known premalignant precursor to esophageal adenocarcinoma(EAC).The prevalence rates continue to rise in the United States,but many patients who are at risk of EAC are not scr... BACKGROUND Barrett's esophagus(BE)is a known premalignant precursor to esophageal adenocarcinoma(EAC).The prevalence rates continue to rise in the United States,but many patients who are at risk of EAC are not screened.Current practice guidelines include male gender as a predisposing factor for BE and EAC.The population-based clinical evidence regarding female gender remains limited.AIM To study comparative trends of gender disparities in patients with BE in the United States.METHODS A nationwide retrospective study was conducted using the 2009-2019 National Inpatient Sample(NIS)database.Patients with a primary or secondary diagnosis code of BE were identified.The major outcome of interest was determining the gender disparities in patients with BE.Trend analysis for respective outcomes for females was also reported to ascertain any time-based shifts.RESULTS We identified 1204190 patients with BE for the study period.Among the included patients,717439(59.6%)were men and 486751(40.4%)were women.The mean age was higher in women than in men(67.1±0.4 vs 66.6±0.3 years,P<0.001).The rate of BE per 100000 total NIS hospitalizations for males increased from 144.6 in 2009 to 213.4 in 2019(P<0.001).The rate for females increased from 96.8 in 2009 to 148.7 in 2019(P<0.001).There was a higher frequency of obesity among women compared to men(17.4%vs 12.6%,P<0.001).Obesity prevalence among females increased from 12.3%in 2009 to 21.9%in 2019(P<0.001).A lower prevalence of smoking was noted in women than in men(20.8%vs 35.7%,P<0.001).However,trend analysis showed an increasing prevalence of smoking among women,from 12.9%in 2009 to 30.7%in 2019(P<0.001).Additionally,there was a lower prevalence of alcohol abuse,Helicobacter pylori(H.pylori),and diabetes mellitus among females than males(P<0.001).Trend analysis showed an increasing prevalence of alcohol use disorder and a decreasing prevalence of H.pylori and diabetes mellitus among women(P<0.001).CONCLUSION The prevalence of BE among women has steadily increased from 2009 to 2019.The existing knowledge concerning BE development has historically focused on men,but our findings show that the risk in women is not insignificant. 展开更多
关键词 Barrett’s esophagus Gender disparity Epidemiological trends Esophageal adenocarcinoma Screening endoscopy Female gender Risk factors
下载PDF
Spatio-temporal distribution of net primary productivity along the northeast China transect and its response to climatic change 被引量:10
19
作者 朱文泉 潘耀忠 +1 位作者 刘鑫 王爱玲 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第2期93-98,共6页
An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal d... An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature. 展开更多
关键词 China Transect Remote sensing Net primary productivity (NPP) Climatic change spatio-temporal distribution
下载PDF
Analysis on Spatio-temporal Distribution of Lightning in Dalian Area of China between 2007 and 2008 被引量:2
20
作者 黄振 李万彪 《Meteorological and Environmental Research》 CAS 2010年第1期14-17,29,共5页
The cloud-to-ground lightning data between 2007 and 2008 were collected by lightning detection and location system,which was composed of four lightning detectors in four different sites of Dalian area.The spatio-tempo... The cloud-to-ground lightning data between 2007 and 2008 were collected by lightning detection and location system,which was composed of four lightning detectors in four different sites of Dalian area.The spatio-temporal distribution of cloud-to-ground lightning in surrounding areas of Dalian was analyzed from several aspects of polarity distribution,diurnal variation,lightning intensity and lightning density.The results showed that the number of negative lightning accounted for 93.9% of the total number of lightning,and its average lightning intensity was 27.99 kA.The number of positive lightning accounted for 6.1% of the total number of lightning,and its average lightning intensity was 35.56 kA.The diurnal variation of lightning frequency showed an obvious structure of two peaks (17:00-18:00 and 04:00-05:00) and two valleys (09:00-10:00 and 00:00-01:00).The number of lightning between May and September was 91.5% of the annual number,and the lightning occurred the most frequently between June and August.Most of positive and negative lightning was at the intensity of 15-35 kA,80.0% lower than 40 kA,and 99.3% lower than 100 kA.The lightning density had obvious regional differences in distribution,high in the Liaodong Bay and the Dalian Bay and low in inland areas.Therefore,coastal areas should attract more attention in lightning disaster defense in the surrounding areas of Dalian. 展开更多
关键词 Dalian area Lightning intensity spatio-temporal distribution China
下载PDF
上一页 1 2 239 下一页 到第
使用帮助 返回顶部