Human activity recognition(HAR)can play a vital role in the monitoring of human activities,particularly for healthcare conscious individuals.The accuracy of HAR systems is completely reliant on the extraction of promi...Human activity recognition(HAR)can play a vital role in the monitoring of human activities,particularly for healthcare conscious individuals.The accuracy of HAR systems is completely reliant on the extraction of prominent features.Existing methods find it very challenging to extract optimal features due to the dynamic nature of activities,thereby reducing recognition performance.In this paper,we propose a robust feature extraction method for HAR systems based on template matching.Essentially,in this method,we want to associate a template of an activity frame or sub-frame comprising the corresponding silhouette.In this regard,the template is placed on the frame pixels to calculate the equivalent number of pixels in the template correspondent those in the frame.This process is replicated for the whole frame,and the pixel is directed to the optimum match.The best count is estimated to be the pixel where the silhouette(provided via the template)presented inside the frame.In this way,the feature vector is generated.After feature vector generation,the hiddenMarkovmodel(HMM)has been utilized to label the incoming activity.We utilized different publicly available standard datasets for experiments.The proposed method achieved the best accuracy against existing state-of-the-art systems.展开更多
Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the a...Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.展开更多
A robust and eficient feature matching method is necessary for visual navigation in asteroid-landing missions.Based on the visual navigation framework and motion characteristics of asteroids,a robust and efficient tem...A robust and eficient feature matching method is necessary for visual navigation in asteroid-landing missions.Based on the visual navigation framework and motion characteristics of asteroids,a robust and efficient template feature matching method is proposed to adapt to feature distortion and scale change cases for visual navigation of asteroids.The proposed method is primarily based on a motion-constrained discriminative correlation filter(DCF).The prior information provided by the motion constraints between sequence images is used to provide a predicted search region for template feature matching.Additionally,some specific template feature samples are generated using the motion constraints for correlation filter learning,which is beneficial for training a scale and feature distortion adaptive correlation filter for accurate feature matching.Moreover,average peak-to-correlation energy(APCE)and jointly consistent measurements(JCMs)were used to eliminate false matching.Images captured by the Touch And Go Camera System(TAGCAMS)of the Bennu asteroid were used to evaluate the performance of the proposed method.In particular,both the robustness and accuracy of region matching and template center matching are evaluated.The qualitative and quantitative results illustrate the advancement of the proposed method in adapting to feature distortions and large-scale changes during spacecraft landing.展开更多
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight...This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.展开更多
By network security threat intelligence analysis based on a security knowledge graph(SKG), multi-source threat intelligence data can be analyzed in a fine-grained manner. This has received extensive attention. It is d...By network security threat intelligence analysis based on a security knowledge graph(SKG), multi-source threat intelligence data can be analyzed in a fine-grained manner. This has received extensive attention. It is difficult for traditional named entity recognition methods to identify mixed security entities in Chinese and English in the field of network security, and there are difficulties in accurately identifying network security entities because of insufficient features extracted. In this paper, we propose a novel FT-CNN-BiLSTM-CRF security entity recognition method based on a neural network CNN-BiLSTM-CRF model combined with a feature template(FT). The feature template is used to extract local context features, and a neural network model is used to automatically extract character features and text global features. Experimental results showed that our method can achieve an F-score of 86% on a large-scale network security dataset and outperforms other methods.展开更多
Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combin...Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.展开更多
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this work through the Project Number“375213500”.
文摘Human activity recognition(HAR)can play a vital role in the monitoring of human activities,particularly for healthcare conscious individuals.The accuracy of HAR systems is completely reliant on the extraction of prominent features.Existing methods find it very challenging to extract optimal features due to the dynamic nature of activities,thereby reducing recognition performance.In this paper,we propose a robust feature extraction method for HAR systems based on template matching.Essentially,in this method,we want to associate a template of an activity frame or sub-frame comprising the corresponding silhouette.In this regard,the template is placed on the frame pixels to calculate the equivalent number of pixels in the template correspondent those in the frame.This process is replicated for the whole frame,and the pixel is directed to the optimum match.The best count is estimated to be the pixel where the silhouette(provided via the template)presented inside the frame.In this way,the feature vector is generated.After feature vector generation,the hiddenMarkovmodel(HMM)has been utilized to label the incoming activity.We utilized different publicly available standard datasets for experiments.The proposed method achieved the best accuracy against existing state-of-the-art systems.
文摘Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars,stones,or leaves.Optical recognition systems can help in preserving,sharing,and accelerate the study of the ancient scripts,but lack of standard dataset for such scripts is a major constraint.Although many scholars and researchers have captured and uploaded inscription images on various websites,manual searching,downloading and extraction of these images is tedious and error prone.Web search queries return a vast number of irrelevant results,and manually extracting images for a specific script is not scalable.This paper proposes a novelmultistage system to identify the specific set of script images from a large set of images downloaded from web sources.The proposed system combines the two most important pattern matching techniques-Scale Invariant Feature Transform(SIFT)and Template matching,in a sequential pipeline,and by using the key strengths of each technique,the system can discard irrelevant images while retaining a specific type of images.
基金funded by the National Natural Science Foundation of China under Grant Nos.41822106 and 42101447the Dawn Scholar of Shanghai Program under Grant No.18SG22+2 种基金the Science and Technology on Aerospace Flight Dynamics Laboratory,China,under Grant No.KGJ6142210110305State Key Laboratory of Disaster Reduction in Civil Engineering under Grant No.SLDRCE19-B-35Fundamental Research Funds for the Central Universities of China.
文摘A robust and eficient feature matching method is necessary for visual navigation in asteroid-landing missions.Based on the visual navigation framework and motion characteristics of asteroids,a robust and efficient template feature matching method is proposed to adapt to feature distortion and scale change cases for visual navigation of asteroids.The proposed method is primarily based on a motion-constrained discriminative correlation filter(DCF).The prior information provided by the motion constraints between sequence images is used to provide a predicted search region for template feature matching.Additionally,some specific template feature samples are generated using the motion constraints for correlation filter learning,which is beneficial for training a scale and feature distortion adaptive correlation filter for accurate feature matching.Moreover,average peak-to-correlation energy(APCE)and jointly consistent measurements(JCMs)were used to eliminate false matching.Images captured by the Touch And Go Camera System(TAGCAMS)of the Bennu asteroid were used to evaluate the performance of the proposed method.In particular,both the robustness and accuracy of region matching and template center matching are evaluated.The qualitative and quantitative results illustrate the advancement of the proposed method in adapting to feature distortions and large-scale changes during spacecraft landing.
基金supported by the National Science and Technology Major Project (2021ZD0112702)the National Natural Science Foundation (NNSF)of China (62373100,62233003)the Natural Science Foundation of Jiangsu Province of China (BK20202006)。
文摘This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models.
基金the National Natural Science Foundation of China (No. 61802081)the Guizhou Provincial Natural Science Foundation, China (No. 20161052)+2 种基金the Guizhou Provincial Public Big Data Key Laboratory Open Project, China (No. 2017BDKFJJ024)the Guizhou University Doctoral Fund, China (No. 201526)the Major Scientific and Technological Special Project of Guizhou Province, China (No. 20183001).
文摘By network security threat intelligence analysis based on a security knowledge graph(SKG), multi-source threat intelligence data can be analyzed in a fine-grained manner. This has received extensive attention. It is difficult for traditional named entity recognition methods to identify mixed security entities in Chinese and English in the field of network security, and there are difficulties in accurately identifying network security entities because of insufficient features extracted. In this paper, we propose a novel FT-CNN-BiLSTM-CRF security entity recognition method based on a neural network CNN-BiLSTM-CRF model combined with a feature template(FT). The feature template is used to extract local context features, and a neural network model is used to automatically extract character features and text global features. Experimental results showed that our method can achieve an F-score of 86% on a large-scale network security dataset and outperforms other methods.
基金supported by National Natural Science Foundation of China(No.61103123)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.