Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,...Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.展开更多
In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotempor...In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science.展开更多
The main objective of this research is to determine the capacity of land cover classification combining spec- tral and textural features of Landsat TM imagery with ancillary geographical data in wetlands of the Sanjia...The main objective of this research is to determine the capacity of land cover classification combining spec- tral and textural features of Landsat TM imagery with ancillary geographical data in wetlands of the Sanjiang Plain, Heilongjiang Province, China. Semi-variograms and Z-test value were calculated to assess the separability of grey-level co-occurrence texture measures to maximize the difference between land cover types. The degree of spatial autocorrelation showed that window sizes of 3×3 pixels and 11×11 pixels were most appropriate for Landsat TM im- age texture calculations. The texture analysis showed that co-occurrence entropy, dissimilarity, and variance texture measures, derived from the Landsat TM spectrum bands and vegetation indices provided the most significant statistical differentiation between land cover types. Subsequently, a Classification and Regression Tree (CART) algorithm was applied to three different combinations of predictors: 1) TM imagery alone (TM-only); 2) TM imagery plus image texture (TM+TXT model); and 3) all predictors including TM imagery, image texture and additional ancillary GIS in- formation (TM+TXT+GIS model). Compared with traditional Maximum Likelihood Classification (MLC) supervised classification, three classification trees predictive models reduced the overall error rate significantly. Image texture measures and ancillary geographical variables depressed the speckle noise effectively and reduced classification error rate of marsh obviously. For classification trees model making use of all available predictors, omission error rate was 12.90% and commission error rate was 10.99% for marsh. The developed method is portable, relatively easy to im- plement and should be applicable in other settings and over larger extents.展开更多
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently...Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international...Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international community once proposed by China. From strategic conception to implementation, GEI development has entered a new phase of joint action now. Gathering and building a global grid database is a prerequisite for conducting research on GEI. Based on the requirement of global grid data management and application, combining with big data and geographic information technology, this paper studies the global grid data acquisition and analysis process, sorts out and designs the global grid database structure supporting GEI research, and builds a global grid database system.展开更多
Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most cruci...Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.展开更多
Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,local...Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.展开更多
Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role...Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.D...COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.Data was collected through social media programming and analyzed using spatiotemporal analysis and a geographically weighted regression(GWR)model.Results highlight that COVID-19 significantly changed park visitation patterns.Visitors tended to explore more remote areas peri-pandemic.The GWR model also indicated distance to nearby trails was a significant influence on visitor density.Our results indicate that the pandemic influenced tourism temporal and spatial imbalance.This research presents a novel approach using combined social media big data which can be extended to the field of tourism management,and has important implications to manage visitor patterns and to allocate resources efficiently to satisfy multiple objectives of park management.展开更多
Increment of mobile cloud video motivates mobile users to utilize cloud storage service to address their demands, cloud storage provider always furnish a location-independent platform for managing user's data. Howeve...Increment of mobile cloud video motivates mobile users to utilize cloud storage service to address their demands, cloud storage provider always furnish a location-independent platform for managing user's data. However, mobile users wonder if their cloud video data leakage or dynamic migration to illegal service providers. In this paper, we design a novel provable data possession protocol based on data geographic location attribute, which allows data owner to auditing the integrity of their video data, which put forward an ideal choice for remote data possession checking in the mobile cloud storage. In our proposed scheme, we check out whether the video data dynamic migrate to an unspecified location (such as: overseas) by adding data geographic location attribute tag into provable data possession protocol. Moreover, we make sure the security of our proposed scheme under the Computational Diffic-Hellman assumption. The analysis and experiment results demonstrate that our proposed scheme is provably secure and efficient.展开更多
Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency id...Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.展开更多
In order to extract the boundary of rural habitation, based on geographic name data and basic geographic information data, an extraction method that use polygon aggregation is raised, it can extract the boundary of th...In order to extract the boundary of rural habitation, based on geographic name data and basic geographic information data, an extraction method that use polygon aggregation is raised, it can extract the boundary of three levels of rural habitation consists of town, administrative village and nature village. The method first extracts the boundary of nature village by aggregating the resident polygon, then extracts the boundary of administrative village by aggregating the boundary of nature village, and last extracts the boundary of town by aggregating the boundary of administrative village. The related methods of extracting the boundary of those three levels rural habitation has been given in detail during the experiment with basic geographic information data and geographic name data. Experimental results show the method can be a reference for boundary extraction of rural habitation.展开更多
By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline...By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.展开更多
GA (geostatistical analyst) is an indispensable tool to analyze various and plenty of data in GIS (geographic information system). Spatial distribution is the most effective factor for predicting of meteorological...GA (geostatistical analyst) is an indispensable tool to analyze various and plenty of data in GIS (geographic information system). Spatial distribution is the most effective factor for predicting of meteorological maps at the point of performance or reliability of the model. Generally, classical interpolation methods may not be sufficient to produce accurate maps. GA is more considerable in this state. Secondary variables affect the precious of prediction models especially meteorological data mapping. In this study 245 meteorological data stations have been evaluated to produce precipitation model maps in Turkey. Long term (25 years) mean annual and monthly precipitation data from Turkish State Meteorological Service and elevation, slope and aspect values from DEM (Digital Elevation Model) were registered. OK (Ordinary Kriging), OCK (Ordinary Co-Kriging) and GWR (Geographically Weighted Regression) have been used as a method to compare the models. With the study if there are effects of secondary variables to precipitation models have been illustrated on the prediction maps. Besides comparing statistical values, regional effects of secondary variables have been determined and illustrated on the maps numerically. As a result to define precipitation distribution spatially R2 values between measured and predicted values have been calculated 0.55 for Kriging, 0.67 for OCK and 0.86 for GWR. Cross validation indicated that GWR interpolation yields the smallest prediction error with elevation, slope and aspect. Spatial distribution of meteorological stations is also other important factor for similar studies.展开更多
Marine geographic information system (MGIS) has great ability to deal with the spatio-temporal problems and has potential superiority when it is applied to oceanography. Using the feature extraction of oceanic pheno...Marine geographic information system (MGIS) has great ability to deal with the spatio-temporal problems and has potential superiority when it is applied to oceanography. Using the feature extraction of oceanic phenomena as a case study, the functions of the MGIS are analyzed, and thus the position of MGIS in the oceanography is defined. Comparing the requirement of MGIS with that of the traditional GIS which has been developed in the terrestrial applications in the past four decades, the frame for the functions of MGIS is constructed. According to the established MGIS, some key technologies are discussed in detail with emphasis on the specialities which can distinguish the MGIS from the traditional GIS.展开更多
Rice planting patterns have changed dramatically over the past several decades in northeast China (NEC) due to the combined influence of global change and agricultural policy. Except for its great implications for e...Rice planting patterns have changed dramatically over the past several decades in northeast China (NEC) due to the combined influence of global change and agricultural policy. Except for its great implications for environmental protection and climate change adaption, the spatio-temporal changes of rice cultivation in NEC are not clear. In this study, we conducted spatio-temporal analyses of NEC's major rice production region, Heilongjiang Province, by using satellite-derived rice cultivation maps. We found that the total cultivated area of rice in Heilongjiang Province increased largely from 1993 to 2011 and it expanded spatially to the northern and eastern part of the Sanjiang Plain. The results also showed that rice cultivation areas experienced a larger increase in the region managed by the Reclamation Management Bureau (RMB) than that managed by the local provincial government. Rice cultivation changes were closely related with those geographic factors over the investigated periods, represented by the geomorphic (slope), climatic (accumulated temperature), and hydrological (watershed) variables. These findings provide clear evidence that crop cultivation in NEC has been modified to better cope with the global change.展开更多
Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-makin...Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.展开更多
Urban resilience assesses a city’s ability to withstand unknown risks.Scholars are not comprehensive in assessing urban resilience,and they lack consideration of population resilience.This study investigated 110 pref...Urban resilience assesses a city’s ability to withstand unknown risks.Scholars are not comprehensive in assessing urban resilience,and they lack consideration of population resilience.This study investigated 110 prefecturelevel cities in the Yangtze River Economic Belt(YREB)as study areas.We calculated the YREB’s level of urban resilience based on the aspects of“economy-society-population-ecology-infrastructure”,which ensured that the comprehensive evaluation of urban resilience is complete and sufficient.The spatio-temporal evolution of urban resilience was analyzed using exploratory spatial data.Geodetectors were used to investigate the impact of several indicators,focusing on economic,social,population,ecological,and infrastructure factors,on urban resilience.The results showed that the urban resilience of the YREB has maintained a slow upward trend from 2005 to 2018,and the average urban resilience of the YREB has risen from 0.2442 to 0.2560.The resilience gap between cities in the study region increased initially and then decreased.The dominant factor in the spatial differentiation of urban resilience was the economic factors,followed by the population factors.Urban resilience has been clarified and an evaluation index system is constructed,which can provide an effective reference for the evaluation of urban resilience among countries around the world.Based on this,factors that optimize urban resilience are configured,and the regional and national sustainable development can be promoted.展开更多
基金financially supported by the National Natural Science Fundation of China(Grant Nos.42161065 and 41461038)。
文摘Understanding the mechanisms and risks of forest fires by building a spatial prediction model is an important means of controlling forest fires.Non-fire point data are important training data for constructing a model,and their quality significantly impacts the prediction performance of the model.However,non-fire point data obtained using existing sampling methods generally suffer from low representativeness.Therefore,this study proposes a non-fire point data sampling method based on geographical similarity to improve the quality of non-fire point samples.The method is based on the idea that the less similar the geographical environment between a sample point and an already occurred fire point,the greater the confidence in being a non-fire point sample.Yunnan Province,China,with a high frequency of forest fires,was used as the study area.We compared the prediction performance of traditional sampling methods and the proposed method using three commonly used forest fire risk prediction models:logistic regression(LR),support vector machine(SVM),and random forest(RF).The results show that the modeling and prediction accuracies of the forest fire prediction models established based on the proposed sampling method are significantly improved compared with those of the traditional sampling method.Specifically,in 2010,the modeling and prediction accuracies improved by 19.1%and 32.8%,respectively,and in 2020,they improved by 13.1%and 24.3%,respectively.Therefore,we believe that collecting non-fire point samples based on the principle of geographical similarity is an effective way to improve the quality of forest fire samples,and thus enhance the prediction of forest fire risk.
文摘In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science.
基金Under the auspices of National Natural Science Foundation of China (No. 40871188) National Key Technologies R&D Program of China (No. 2006BAD23B03)
文摘The main objective of this research is to determine the capacity of land cover classification combining spec- tral and textural features of Landsat TM imagery with ancillary geographical data in wetlands of the Sanjiang Plain, Heilongjiang Province, China. Semi-variograms and Z-test value were calculated to assess the separability of grey-level co-occurrence texture measures to maximize the difference between land cover types. The degree of spatial autocorrelation showed that window sizes of 3×3 pixels and 11×11 pixels were most appropriate for Landsat TM im- age texture calculations. The texture analysis showed that co-occurrence entropy, dissimilarity, and variance texture measures, derived from the Landsat TM spectrum bands and vegetation indices provided the most significant statistical differentiation between land cover types. Subsequently, a Classification and Regression Tree (CART) algorithm was applied to three different combinations of predictors: 1) TM imagery alone (TM-only); 2) TM imagery plus image texture (TM+TXT model); and 3) all predictors including TM imagery, image texture and additional ancillary GIS in- formation (TM+TXT+GIS model). Compared with traditional Maximum Likelihood Classification (MLC) supervised classification, three classification trees predictive models reduced the overall error rate significantly. Image texture measures and ancillary geographical variables depressed the speckle noise effectively and reduced classification error rate of marsh obviously. For classification trees model making use of all available predictors, omission error rate was 12.90% and commission error rate was 10.99% for marsh. The developed method is portable, relatively easy to im- plement and should be applicable in other settings and over larger extents.
基金supported by the National Key Basic Research and Development Program of China under contract No.2006CB701305the National Natural Science Foundation of China under coutract No.40571129the National High-Technology Program of China under contract Nos 2002AA639400,2003AA604040 and 2003AA637030.
文摘Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
文摘Energy crisis and climate change have become two seriously concerned issues universally. As a feasible solution, Global Energy Interconnection(GEI) has been highly praised and positively responded by the international community once proposed by China. From strategic conception to implementation, GEI development has entered a new phase of joint action now. Gathering and building a global grid database is a prerequisite for conducting research on GEI. Based on the requirement of global grid data management and application, combining with big data and geographic information technology, this paper studies the global grid data acquisition and analysis process, sorts out and designs the global grid database structure supporting GEI research, and builds a global grid database system.
文摘Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.
文摘Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.
基金supported by the Natural Science Foundation of Hubei Province, China (2017CFB434)the National Natural Science Foundation of China (41506208 and 61501200)the Basic Research Funds for Yellow River Institute of Hydraulic Research, China (HKYJBYW-2016-06)
文摘Mapping crop distribution with remote sensing data is of great importance for agricultural production, food security and agricultural sustainability. Winter rape is an important oil crop, which plays an important role in the cooking oil market of China. The Jianghan Plain and Dongting Lake Plain (JPDLP) are major agricultural production areas in China. Essential changes in winter rape distribution have taken place in this area during the 21st century. However, the pattern of these changes remains unknown. In this study, the spatial and temporal dynamics of winter rape from 2000 to 2017 on the JPDLP were analyzed. An artificial neural network (ANN)-based classification method was proposed to map fractional winter rape distribution by fusing moderate resolution imaging spectrometer (MODIS) data and high-resolution imagery. The results are as follows:(1) The total winter rape acreages on the JPDLP dropped significantly, especially on the Jianghan Plain with a decline of about 45% during 2000 and 2017.(2) The winter rape abundance keeps changing with about 20–30% croplands changing their abundance drastically in every two consecutive observation years.(3) The winter rape has obvious regional differentiation for the trend of its change at the county level, and the decreasing trend was observed more strongly in the traditionally dominant agricultural counties.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
基金This research was supported by the UBC APFNet Grant(Project ID:2022sp2 CAN).
文摘COVID-19 posed challenges for global tourism management.Changes in visitor temporal and spatial patterns and their associated determinants pre-and peri-pandemic in Canadian Rocky Mountain National Parks are analyzed.Data was collected through social media programming and analyzed using spatiotemporal analysis and a geographically weighted regression(GWR)model.Results highlight that COVID-19 significantly changed park visitation patterns.Visitors tended to explore more remote areas peri-pandemic.The GWR model also indicated distance to nearby trails was a significant influence on visitor density.Our results indicate that the pandemic influenced tourism temporal and spatial imbalance.This research presents a novel approach using combined social media big data which can be extended to the field of tourism management,and has important implications to manage visitor patterns and to allocate resources efficiently to satisfy multiple objectives of park management.
基金supported in part by National High Tech Research and Development Program(863 Program)of China(No.2015 AA016005)
文摘Increment of mobile cloud video motivates mobile users to utilize cloud storage service to address their demands, cloud storage provider always furnish a location-independent platform for managing user's data. However, mobile users wonder if their cloud video data leakage or dynamic migration to illegal service providers. In this paper, we design a novel provable data possession protocol based on data geographic location attribute, which allows data owner to auditing the integrity of their video data, which put forward an ideal choice for remote data possession checking in the mobile cloud storage. In our proposed scheme, we check out whether the video data dynamic migrate to an unspecified location (such as: overseas) by adding data geographic location attribute tag into provable data possession protocol. Moreover, we make sure the security of our proposed scheme under the Computational Diffic-Hellman assumption. The analysis and experiment results demonstrate that our proposed scheme is provably secure and efficient.
基金This research was supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2020-2016-0-00313)supervised by the Institute for Information&communications Technology Planning&Evaluation(IITP)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Precise information on indoor positioning provides a foundation for position-related customer services.Despite the emergence of several indoor positioning technologies such as ultrawideband,infrared,radio frequency identification,Bluetooth beacons,pedestrian dead reckoning,and magnetic field,Wi-Fi is one of the most widely used technologies.Predominantly,Wi-Fi fingerprinting is the most popular method and has been researched over the past two decades.Wi-Fi positioning faces three core problems:device heterogeneity,robustness to signal changes caused by human mobility,and device attitude,i.e.,varying orientations.The existing methods do not cover these aspects owing to the unavailability of publicly available datasets.This study introduces a dataset that includes the Wi-Fi received signal strength(RSS)gathered using four different devices,namely Samsung Galaxy S8,S9,A8,LG G6,and LG G7,operated by three surveyors,including a female and two males.In addition,three orientations of the smartphones are used for the data collection and include multiple buildings with a multifloor environment.Various levels of human mobility have been considered in dynamic environments.To analyze the time-related impact on Wi-Fi RSS,data over 3 years have been considered.
文摘In order to extract the boundary of rural habitation, based on geographic name data and basic geographic information data, an extraction method that use polygon aggregation is raised, it can extract the boundary of three levels of rural habitation consists of town, administrative village and nature village. The method first extracts the boundary of nature village by aggregating the resident polygon, then extracts the boundary of administrative village by aggregating the boundary of nature village, and last extracts the boundary of town by aggregating the boundary of administrative village. The related methods of extracting the boundary of those three levels rural habitation has been given in detail during the experiment with basic geographic information data and geographic name data. Experimental results show the method can be a reference for boundary extraction of rural habitation.
文摘By using CiteSpace software to create a knowledge map of authors,institutions and keywords,the literature on the spatio-temporal behavior of Chinese residents based on big data in the architectural planning discipline published in the China Academic Network Publishing Database(CNKI)was analyzed and discussed.It is found that there was a lack of communication and cooperation among research institutions and scholars;the research hotspots involved four main areas,including“application in tourism research”,“application in traffic travel research”,“application in work-housing relationship research”,and“application in personal family life research”.
文摘GA (geostatistical analyst) is an indispensable tool to analyze various and plenty of data in GIS (geographic information system). Spatial distribution is the most effective factor for predicting of meteorological maps at the point of performance or reliability of the model. Generally, classical interpolation methods may not be sufficient to produce accurate maps. GA is more considerable in this state. Secondary variables affect the precious of prediction models especially meteorological data mapping. In this study 245 meteorological data stations have been evaluated to produce precipitation model maps in Turkey. Long term (25 years) mean annual and monthly precipitation data from Turkish State Meteorological Service and elevation, slope and aspect values from DEM (Digital Elevation Model) were registered. OK (Ordinary Kriging), OCK (Ordinary Co-Kriging) and GWR (Geographically Weighted Regression) have been used as a method to compare the models. With the study if there are effects of secondary variables to precipitation models have been illustrated on the prediction maps. Besides comparing statistical values, regional effects of secondary variables have been determined and illustrated on the maps numerically. As a result to define precipitation distribution spatially R2 values between measured and predicted values have been calculated 0.55 for Kriging, 0.67 for OCK and 0.86 for GWR. Cross validation indicated that GWR interpolation yields the smallest prediction error with elevation, slope and aspect. Spatial distribution of meteorological stations is also other important factor for similar studies.
基金funded by the Project of"973"Program of China under contract No.2006 CB701305the National Natural Science Foundation of China under contract No.40571129.
文摘Marine geographic information system (MGIS) has great ability to deal with the spatio-temporal problems and has potential superiority when it is applied to oceanography. Using the feature extraction of oceanic phenomena as a case study, the functions of the MGIS are analyzed, and thus the position of MGIS in the oceanography is defined. Comparing the requirement of MGIS with that of the traditional GIS which has been developed in the terrestrial applications in the past four decades, the frame for the functions of MGIS is constructed. According to the established MGIS, some key technologies are discussed in detail with emphasis on the specialities which can distinguish the MGIS from the traditional GIS.
基金financially supported by the Opening Foundation of the Key Laboratory of Agricultural Information Technology,Ministry of Agriculture,China (2016009)the National Natural Science Foundation of China (41501111 and 41271112)
文摘Rice planting patterns have changed dramatically over the past several decades in northeast China (NEC) due to the combined influence of global change and agricultural policy. Except for its great implications for environmental protection and climate change adaption, the spatio-temporal changes of rice cultivation in NEC are not clear. In this study, we conducted spatio-temporal analyses of NEC's major rice production region, Heilongjiang Province, by using satellite-derived rice cultivation maps. We found that the total cultivated area of rice in Heilongjiang Province increased largely from 1993 to 2011 and it expanded spatially to the northern and eastern part of the Sanjiang Plain. The results also showed that rice cultivation areas experienced a larger increase in the region managed by the Reclamation Management Bureau (RMB) than that managed by the local provincial government. Rice cultivation changes were closely related with those geographic factors over the investigated periods, represented by the geomorphic (slope), climatic (accumulated temperature), and hydrological (watershed) variables. These findings provide clear evidence that crop cultivation in NEC has been modified to better cope with the global change.
基金Under the auspices of Fujian Natural Science Foundation General Program(No.2020J01572)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)。
文摘Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.
基金I would like to thank the National Natural Science Foundation of China(Grant No.42061041)for the funding.
文摘Urban resilience assesses a city’s ability to withstand unknown risks.Scholars are not comprehensive in assessing urban resilience,and they lack consideration of population resilience.This study investigated 110 prefecturelevel cities in the Yangtze River Economic Belt(YREB)as study areas.We calculated the YREB’s level of urban resilience based on the aspects of“economy-society-population-ecology-infrastructure”,which ensured that the comprehensive evaluation of urban resilience is complete and sufficient.The spatio-temporal evolution of urban resilience was analyzed using exploratory spatial data.Geodetectors were used to investigate the impact of several indicators,focusing on economic,social,population,ecological,and infrastructure factors,on urban resilience.The results showed that the urban resilience of the YREB has maintained a slow upward trend from 2005 to 2018,and the average urban resilience of the YREB has risen from 0.2442 to 0.2560.The resilience gap between cities in the study region increased initially and then decreased.The dominant factor in the spatial differentiation of urban resilience was the economic factors,followed by the population factors.Urban resilience has been clarified and an evaluation index system is constructed,which can provide an effective reference for the evaluation of urban resilience among countries around the world.Based on this,factors that optimize urban resilience are configured,and the regional and national sustainable development can be promoted.