Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec...Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.展开更多
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p...To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.展开更多
The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is nece...The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.展开更多
A new method is proposed for the effective roughness length (ERL) in heterogeneous terrain based on the principle of equalisation of momentum or heat fluxes calculated by the drag coefficient parameterization scheme u...A new method is proposed for the effective roughness length (ERL) in heterogeneous terrain based on the principle of equalisation of momentum or heat fluxes calculated by the drag coefficient parameterization scheme used in the ECMWF numerical model. Compared with the area-weighted logarithmically averaged ERL (drag coefficient), the newly calculated ERL (drag coefficient) is about 40% (16%) larger with a roughness step of 2.3. These differences reach their maximum values when the ratio of smooth to rough surface is 60% to 40%. Since the determination by this method is not sensitive to the atmospheric stratification, it is suitable for use in climate models.展开更多
The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element meth...The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element method(RMFEM). In the SCM, microcracks are assumed to be randomly distributed and penny-shaped and inclusions to be spherical, the crack effect is accounted for by introducing a crack density parameter, the effective thermal conductivity is derived which relates the macroscopic behavior to the crack density parameter. In the RMFEM, the highly irregular microstructure of the heterogeneous media is accurately described, the interaction among the matrix-inclusion-microcracks is exactly treated, the inclusion shape effect and crack size effect are considered. A Ni/ZrO2 particulate composite material containing randomly distributed, penny-shaped cracks is examined as an example. The main results obtained are: (1) the effective thermal conductivity is sensitive to the crack density and exhibits essentially a linear relationship with the density parameter: (2) the inclusion shape has a significant effect on the effective thermal conductivity and a polygon-shaped inclusion is more effective in increasing or decreasing the effective thermal conductivity than a sphere-shaped one; and (3) the SCM and RMFEM are compared and the two methods give the same effective property in the case in which the matrix thermal conductivity A, is greater than the inclusion one lambda(2). In the inverse case of lambda(1) < lambda(2), the two methods as the as the inclusion volume fraction and crack density are low and differ as they are high. A reasonable explanation for the agreement and deviation between the two methods in the case of lambda(1) < lambda(2) is made.展开更多
With the increasing maturity of automatic driving technology,the homogeneous traffic flow will gradually evolve into the heterogeneous traffic flow,which consists of human-driving and autonomous vehicles.To better stu...With the increasing maturity of automatic driving technology,the homogeneous traffic flow will gradually evolve into the heterogeneous traffic flow,which consists of human-driving and autonomous vehicles.To better study the characteristics of the heterogeneous traffic system,this paper proposes a new car-following model for autonomous vehicles and heterogeneous traffic flow,which considers the self-stabilizing effect of vehicles.Through linear and nonlinear methods,this paper deduces and analyzes the stability of such a car-following model with the self-stabilizing effect.Finally,the model is verified by numerical simulation.Numerical results show that the self-stabilizing effect can make the heterogeneous traffic flow more stable,and that increasing the self-stabilizing coefficient or historical time length can strengthen the stability of heterogeneous traffic flow and alleviate traffic congestion effectively.In addition,the heterogeneous traffic flow can also be stabilized with a higher proportion of autonomous vehicles.展开更多
Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based o...Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately.展开更多
Rocks are heterogeneous from the point of dynamic failure behavior. Both the compressive and microstructure which is of significance to their tensile strength of rock-like materials is regarded different from the stat...Rocks are heterogeneous from the point of dynamic failure behavior. Both the compressive and microstructure which is of significance to their tensile strength of rock-like materials is regarded different from the static strength. The present study adopts smoothed particle hydrodynamics (SPH) which is a virtual particle based meshfree method to investigate strain rate effect for heterogeneous brittle materials. The SPH method is capable of simulating rock fracture, free of the mesh constraint of the traditional FEM and FDM models. A pressure dependent J-H constitutive model involving heterogeneity is employed in the numerical modeling. The results show the compressive strength increases with the increase of strain rate as well as the tensile strength, which is important to the engineering design.展开更多
The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hy...The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.展开更多
Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,c...Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.展开更多
We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both ...We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both the inplane(parallel to the nano-lamellae)and out-of-plane(normal and 45inclined to the nano-lamellae)mechanical anisotropy.The parallel orientation demonstrates the greatest tensile strength while the inclined orientation exhibits the least strength.The tensile tests in normal and inclined directions also indicate significant transient elastic-plastic response due to the strain path change.Fractographic examination demonstrates that the specimen fails in the normal direction by premature micro-void nucleation and growth,which restricts its tensile strength;however,we identified zig-zag cracking associated with lamellar shear cracking in the inclined direction.展开更多
Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wi...Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.展开更多
Sea surface wind stress variabilities near and off the east coast of Korea, are examined using 7 kinds of wind datasets from measurements at 2 coastal (land) stations and 2 ocean buoys,satellite scatterometer (QuikSCA...Sea surface wind stress variabilities near and off the east coast of Korea, are examined using 7 kinds of wind datasets from measurements at 2 coastal (land) stations and 2 ocean buoys,satellite scatterometer (QuikSCAT), and global reanalyzed products (ECMWF,NOGAPS,and NCEP/NCAR). Temporal variabilities are analyzed at 3 frequency bands; synoptic (2-20 d), intra-seasonal (20-90 d),and seasonal (>90 d).Synoptic and intra-seasonal variations are predominant near and off the Donghae City due to the passage of the mesoscale weather system. Seasonal variation is caused by southeastward wind stress during Asian winter monsoon. The sea surface wind stress from reanalyzed datasets.QuikSCAT and KMA-B measurements off the coast show good agreement in the magnitude and direction,which are strongly aligned with the alongshore direction.At the land-based sites,wind stresses are much weaker by factors of 3-10 due to the mountainous landmass on the east parts of Korea Peninsula.The first EOF modes(67%-70%) of wind stresses from reanalyzed and QuikSCAT data have similar structures of the strong southeastward wind stress in winter along the coast but show different curl structures at scales less than 200 km due to the orographic effects.The second EOF modes (23%-25%) show southwestward wind stress in every September along the east coast of the North Korea展开更多
Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency...Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency. The characteristics and displacement mechanisms of the system were investigated via core flow tests and visual simulation experiments. The SHC flooding system composed of DPG particles and surfactants was suitable for the reservoirs with the temperature of 80-110 °C and the salinity of 1×10~4-10×10~4 mg/L. The system presented good characteristics: low viscosity, weak negatively charged, temperature and salinity resistance, particles aggregation capacity, wettability alteration on oil wet surface, wettability weaken on water wet surface, and interfacial tension(IFT) still less than 1×10^(-1) mN/m after aging at high temperature. The SHC flooding system achieved the micro-profile control by entering formations deeply and the better performance was found in the formation with the higher permeability difference existing between the layers, which suggested that the flooding system was superior to the surfactants, DPG particles, and polymer/surfactant compound flooding systems. The system could effectively enhance the micro-profile control in porous media through four behaviors, including direct plugging, bridging, adsorption, and retention. Moreover, the surfactant in the system magnified the deep migration capability and oil displacement capacity of the SHC flooding system, and the impact was strengthened through the mechanisms of improved displacement capacity, synergistic emulsification, enhanced wettability alteration ability and coalescence of oil belts. The synergistic effect of the two components of SHC flooding system improved oil displacement efficiency and subsequently enhanced oil recovery.展开更多
The actual effective partition coefficients of Mg and Cr in a cross-section of a dendrite arm in a direct-chill(DC)-casting ingot of 7475 aluminum alloy are obtained.Meanwhile,by analyzing the microstructure,the mecha...The actual effective partition coefficients of Mg and Cr in a cross-section of a dendrite arm in a direct-chill(DC)-casting ingot of 7475 aluminum alloy are obtained.Meanwhile,by analyzing the microstructure,the mechanism of the heterogeneous distribution of E(Al_(18)Mg_(3)Cr_(2))dispersoids in this DC ingot is revealed.The results show that the actual effective partition coefficients of Mg and Cr are 0.650 and 1.392,respectively,and they describe the heterogeneous distributions of Mg and Cr along the direction of radius of the cross-section of the dendrite arm of the alloy.After homogenization treatment at 470℃ for 24 h,Mg diffuses uniformly,but Cr hardly diffuses.Both the concentrations of Mg and Cr and the sites of heterogeneous nucleation in the alloy are the determinants of the formation of E dispersoids simultaneously.The heat treatment at 250℃ for 72 h provides a large number of the sites of heterogeneous nucleation of the formation of fine E dispersoids that will be formed in the center of the cross-section during the subsequent heat treatment at higher temperature.展开更多
Based on analyses of the spatio-temporal evolutionary characteristics of teleseismic response recorded by Fujian subsurface fluid network and in combination with earthquakes happened in Fujian province during the same...Based on analyses of the spatio-temporal evolutionary characteristics of teleseismic response recorded by Fujian subsurface fluid network and in combination with earthquakes happened in Fujian province during the same period, this paper points out that the step-like rising of water level after distant earthquakes may include some regional stress field information, and the area where water level step-like rises could be the position that the stress concentrated on and where the future earthquakes would occur. If combined with other impending precursors, the location of the events may be predicted to a certain degree.展开更多
Detailed information on the spatio-temporal changes of cropland soil organic carbon(SOC) can significantly contribute to the improvement of soil fertility and mitigate climate change. Nonetheless, information and know...Detailed information on the spatio-temporal changes of cropland soil organic carbon(SOC) can significantly contribute to the improvement of soil fertility and mitigate climate change. Nonetheless, information and knowledge on the national scale spatio-temporal changes and the corresponding uncertainties of SOC in Chinese upland soils remain limited. The CENTURY model was used to estimate the SOC storages and their changes in Chinese uplands from 1980 to 2010. With the Monte Carlo method, the uncertainties of CENTURY-modelled SOC dynamics associated with the spatial heterogeneous model inputs were quantified. Results revealed that the SOC storage in Chinese uplands increased from 3.03(1.59 to 4.78) Pg C in 1980 to 3.40(2.39 to 4.62) Pg C in 2010. Increment of SOC storage during this period was 370 Tg C, with an uncertainty interval of –440 to 1110 Tg C. The regional disparities of SOC changes reached a significant level, with considerable SOC accumulation in the Huang-Huai-Hai Plain of China and SOC loss in the northeastern China. The SOC lost from Meadow soils, Black soils and Chernozems was most severe, whilst SOC accumulation in Fluvo-aquic soils, Cinnamon soils and Purplish soils was most significant. In modelling large-scale SOC dynamics, the initial soil properties were major sources of uncertainty. Hence, more detailed information concerning the soil properties must be collected. The SOC stock of Chinese uplands in 2010 was still relatively low, manifesting that recommended agricultural management practices in conjunction with effectively economic and policy incentives to farmers for soil fertility improvement were indispensable for future carbon sequestration in these regions.展开更多
The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with th...The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.展开更多
Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to t...Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to their potential application in ionic battery.This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation,aggregation of polar and apolar domains in neat RTILs,and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions.At the same time,the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed.This paper also presents the current understanding of how water affects the anion-cation interaction,structural heterogeneities,the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.展开更多
Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes ...Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes and space-time epidemic processes. This paper seeks to suggest or propose Bayesian spatio-temporal model for modeling and mapping tuberculosis relative risks in space and time as well identify risks factors associated with the tuberculosis and counties in Kenya with high tuberculosis relative risks. In this paper, we used spatio-temporal Bayesian hierarchical models to study the pattern of tuberculosis relative risks in Kenya. The Markov Chain Monte Carlo method via WinBUGS and R packages were used for simulations and estimation of the parameter estimates. The best fitting model is selected using the Deviance Information Criterion proposed by Spiegelhalter and colleagues. Among the spatio-temporal models used, the Knorr-Held model with space-time interaction type III and IV fit the data well but type IV appears better than type III. Variation in tuberculosis risk is observed among Kenya counties and clustering among counties with high tuberculosis relative risks. The prevalence of HIV is identified as the determinant of TB. We found clustering and heterogeneity of TB risk among high rate counties and the overall tuberculosis risk is slightly decreasing from 2002-2009. We proposed that the Knorr-Held model with interaction type IV should be used to model and map Kenyan tuberculosis relative risks. Interaction of TB relative risk in space and time increases among rural counties that share boundaries with urban counties with high tuberculosis risk. This is due to the ability of models to borrow strength from neighboring counties, such that nearby counties have similar risk. Although the approaches are less than ideal, we hope that our study provide a useful stepping stone in the development of spatial and spatio-temporal methodology for the statistical analysis of risk from tuberculosis in Kenya.展开更多
基金supported by the National Natural Science Foundation of China(52272194)Liaoning Revitalization Talents Program(XLYC2007155)。
文摘Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.
基金supported by National Natural Science Foundation of China(Grant No.62073256)the Shaanxi Provincial Science and Technology Department(Grant No.2023-YBGY-342).
文摘To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis.
基金Project supported by the National Natural Science Foundation of China (Nos. 52075070 and12302254)the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents (No. 2021RD16)the Liaoning Revitalization Talents Program (No. XLYC2002108)。
文摘The determination of the ultimate load-bearing capacity of structures made of elastoplastic heterogeneous materials under varying loads is of great importance for engineering analysis and design. Therefore, it is necessary to accurately predict the shakedown domains of these materials. The static shakedown theorem, also known as Melan's theorem, is a fundamental method used to predict the shakedown domains of structures and materials. Within this method, a key aspect lies in the construction and application of an appropriate self-equilibrium stress field(SSF). In the structural shakedown analysis, the SSF is typically constructed by governing equations that satisfy no external force(NEF) boundary conditions. However, we discover that directly applying these governing equations is not suitable for the shakedown analysis of heterogeneous materials. Researchers must consider the requirements imposed by the Hill-Mandel condition for boundary conditions and the physical significance of representative volume elements(RVEs). This paper addresses this issue and demonstrates that the sizes of SSFs vary under different boundary conditions, such as uniform displacement boundary conditions(DBCs), uniform traction boundary conditions(TBCs), and periodic boundary conditions(PBCs). As a result, significant discrepancies arise in the predicted shakedown domain sizes of heterogeneous materials. Built on the demonstrated relationship between SSFs under different boundary conditions, this study explores the conservative relationships among different shakedown domains, and provides proof of the relationship between the elastic limit(EL) factors and the shakedown loading factors under the loading domain of two load vertices. By utilizing numerical examples, we highlight the conservatism present in certain results reported in the existing literature. Among the investigated boundary conditions, the obtained shakedown domain is the most conservative under TBCs.Conversely, utilizing PBCs to construct an SSF for the shakedown analysis leads to less conservative lower bounds, indicating that PBCs should be employed as the preferred boundary conditions for the shakedown analysis of heterogeneous materials.
基金This work was supportedjointly by the National Key Basic Research DevelopmentProgram(G1999043400)and the National Natural ScienceFoundation of China under Grant Nos.40275021,and49975016.
文摘A new method is proposed for the effective roughness length (ERL) in heterogeneous terrain based on the principle of equalisation of momentum or heat fluxes calculated by the drag coefficient parameterization scheme used in the ECMWF numerical model. Compared with the area-weighted logarithmically averaged ERL (drag coefficient), the newly calculated ERL (drag coefficient) is about 40% (16%) larger with a roughness step of 2.3. These differences reach their maximum values when the ratio of smooth to rough surface is 60% to 40%. Since the determination by this method is not sensitive to the atmospheric stratification, it is suitable for use in climate models.
基金the National Natural Science Foundation of ChinaChinese"863"High-Tech.Program
文摘The effective thermal conductivity of matrix-inclusion-microcrack three-phase heterogeneous materials is investigated with a self-consistent micromechanical method (SCM) and a random microstructure finite element method(RMFEM). In the SCM, microcracks are assumed to be randomly distributed and penny-shaped and inclusions to be spherical, the crack effect is accounted for by introducing a crack density parameter, the effective thermal conductivity is derived which relates the macroscopic behavior to the crack density parameter. In the RMFEM, the highly irregular microstructure of the heterogeneous media is accurately described, the interaction among the matrix-inclusion-microcracks is exactly treated, the inclusion shape effect and crack size effect are considered. A Ni/ZrO2 particulate composite material containing randomly distributed, penny-shaped cracks is examined as an example. The main results obtained are: (1) the effective thermal conductivity is sensitive to the crack density and exhibits essentially a linear relationship with the density parameter: (2) the inclusion shape has a significant effect on the effective thermal conductivity and a polygon-shaped inclusion is more effective in increasing or decreasing the effective thermal conductivity than a sphere-shaped one; and (3) the SCM and RMFEM are compared and the two methods give the same effective property in the case in which the matrix thermal conductivity A, is greater than the inclusion one lambda(2). In the inverse case of lambda(1) < lambda(2), the two methods as the as the inclusion volume fraction and crack density are low and differ as they are high. A reasonable explanation for the agreement and deviation between the two methods in the case of lambda(1) < lambda(2) is made.
基金supported by the National Natural Science Foundation of China(Grant No.61773243)the Major Technology Innovation Project of Shandong Province,China(Grant No.2019TSLH0203)the National Key Research and Development Program of China(Grant No.2020YFB1600501)。
文摘With the increasing maturity of automatic driving technology,the homogeneous traffic flow will gradually evolve into the heterogeneous traffic flow,which consists of human-driving and autonomous vehicles.To better study the characteristics of the heterogeneous traffic system,this paper proposes a new car-following model for autonomous vehicles and heterogeneous traffic flow,which considers the self-stabilizing effect of vehicles.Through linear and nonlinear methods,this paper deduces and analyzes the stability of such a car-following model with the self-stabilizing effect.Finally,the model is verified by numerical simulation.Numerical results show that the self-stabilizing effect can make the heterogeneous traffic flow more stable,and that increasing the self-stabilizing coefficient or historical time length can strengthen the stability of heterogeneous traffic flow and alleviate traffic congestion effectively.In addition,the heterogeneous traffic flow can also be stabilized with a higher proportion of autonomous vehicles.
基金the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the Key Program of National Natural Science Foundation of China(Grant No.41931286)the China Postdoctoral Science Foundation(Grant No.2021M691147)。
文摘Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately.
文摘Rocks are heterogeneous from the point of dynamic failure behavior. Both the compressive and microstructure which is of significance to their tensile strength of rock-like materials is regarded different from the static strength. The present study adopts smoothed particle hydrodynamics (SPH) which is a virtual particle based meshfree method to investigate strain rate effect for heterogeneous brittle materials. The SPH method is capable of simulating rock fracture, free of the mesh constraint of the traditional FEM and FDM models. A pressure dependent J-H constitutive model involving heterogeneity is employed in the numerical modeling. The results show the compressive strength increases with the increase of strain rate as well as the tensile strength, which is important to the engineering design.
基金We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grants 51374213 and 51674251), National Natural Science Fund for Distinguished Young Scholars of China (Grant 51125017), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant 51421003), Fund for Innovative Research and Development Group Program of Jiangsu Province (Grant 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant PAPD 2014).
文摘The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.
基金financially supported by the National Natural Science Foundation of China(No.U1810205)the National Basic Research Program of China(No.2014CB 643401)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes。
文摘Pure metal-doped(Cu,Zn)Fe2O4 was synthesized from Zn-containing electric arc furnace dust(EAFD)by solid-state reaction using copper salt as additive.The effects of pretreated EAFD-to-Cu2(OH)2CO3·6H2O mass ratio,calcination time,and calcination temperature on the structure and catalytic ability were systematically studied.Under the optimum conditions,the decolorization efficiency and total organic carbon(TOC)removal efficiency of the as-prepared ferrite for treating a Rhodamine B solution were approximately 90.0%and 45.0%,respectively,and the decolorization efficiency remained 83.0%after five recycles,suggesting that the as-prepared(Cu,Zn)Fe2O4 was an efficient heterogeneous Fenton-like catalyst with high stability.The high catalytic activity mainly depended on the synergistic effect of iron and copper ions occupying octahedral positions.More importantly,the toxicity characteristic leaching procedure(TCLP)analysis illustrated that the toxic Zncontaining EAFD was transformed into harmless(Cu,Zn)Fe2O4 and that the concentrations of toxic ions in the degraded solution were all lower than the national emission standard(GB/31574-2015),further confirming that the as obtained sample is an environment-friendly heterogeneous Fenton-like catalyst.
基金financial support from the National Key R&D Program of China(Grant No.2017YFA0204403)financial support by the National Natural Science Foundation of China(Grant No.51931010,51601196 and U1608257)+2 种基金the Liaoning Revitalization Talents Program(Grant No.XLYC1802026)the Key Research Program of Frontier Science,Chinese Academy of Sciencesthe financial support of the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX180408).
文摘We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both the inplane(parallel to the nano-lamellae)and out-of-plane(normal and 45inclined to the nano-lamellae)mechanical anisotropy.The parallel orientation demonstrates the greatest tensile strength while the inclined orientation exhibits the least strength.The tensile tests in normal and inclined directions also indicate significant transient elastic-plastic response due to the strain path change.Fractographic examination demonstrates that the specimen fails in the normal direction by premature micro-void nucleation and growth,which restricts its tensile strength;however,we identified zig-zag cracking associated with lamellar shear cracking in the inclined direction.
基金supported in part by the National Natural Science Foundation of China(Nos.61771368 and 61671347)Young Elite Scientists Sponsorship Program by CAST(2016QNRC001)
文摘Quality of experience(Qo E), which is very critical for the experience of users in wireless networks, has been extensively studied. However, due to different human perceptions, quantifying the effective capacity of wireless network subject to diverse Qo E is very difficult, which leads to many new challenges regarding Qo E guarantees in wireless networks. In this paper, we formulate the Qo E guarantees model for cellular wireless networks. Based on the model, we convert the effective capacity maximization problem into the equivalent convex optimization problem. Then, we develop the optimal Qo E-driven power allocation scheme, which can maximize the effective capacity. The obtained simulation results verified our proposed power allocation scheme, showing that the effective capacity can be significantly increased compared with that of traditional Qo E guarantees based schemes.
文摘Sea surface wind stress variabilities near and off the east coast of Korea, are examined using 7 kinds of wind datasets from measurements at 2 coastal (land) stations and 2 ocean buoys,satellite scatterometer (QuikSCAT), and global reanalyzed products (ECMWF,NOGAPS,and NCEP/NCAR). Temporal variabilities are analyzed at 3 frequency bands; synoptic (2-20 d), intra-seasonal (20-90 d),and seasonal (>90 d).Synoptic and intra-seasonal variations are predominant near and off the Donghae City due to the passage of the mesoscale weather system. Seasonal variation is caused by southeastward wind stress during Asian winter monsoon. The sea surface wind stress from reanalyzed datasets.QuikSCAT and KMA-B measurements off the coast show good agreement in the magnitude and direction,which are strongly aligned with the alongshore direction.At the land-based sites,wind stresses are much weaker by factors of 3-10 due to the mountainous landmass on the east parts of Korea Peninsula.The first EOF modes(67%-70%) of wind stresses from reanalyzed and QuikSCAT data have similar structures of the strong southeastward wind stress in winter along the coast but show different curl structures at scales less than 200 km due to the orographic effects.The second EOF modes (23%-25%) show southwestward wind stress in every September along the east coast of the North Korea
基金Supported by the National Key Basic Research and Development Program,China(2015CB250904)
文摘Considering high temperature and high salinity in the reservoirs, a dispersed particle gel soft heterogeneous compound(SHC) flooding system was prepared to improve the micro-profile control and displacement efficiency. The characteristics and displacement mechanisms of the system were investigated via core flow tests and visual simulation experiments. The SHC flooding system composed of DPG particles and surfactants was suitable for the reservoirs with the temperature of 80-110 °C and the salinity of 1×10~4-10×10~4 mg/L. The system presented good characteristics: low viscosity, weak negatively charged, temperature and salinity resistance, particles aggregation capacity, wettability alteration on oil wet surface, wettability weaken on water wet surface, and interfacial tension(IFT) still less than 1×10^(-1) mN/m after aging at high temperature. The SHC flooding system achieved the micro-profile control by entering formations deeply and the better performance was found in the formation with the higher permeability difference existing between the layers, which suggested that the flooding system was superior to the surfactants, DPG particles, and polymer/surfactant compound flooding systems. The system could effectively enhance the micro-profile control in porous media through four behaviors, including direct plugging, bridging, adsorption, and retention. Moreover, the surfactant in the system magnified the deep migration capability and oil displacement capacity of the SHC flooding system, and the impact was strengthened through the mechanisms of improved displacement capacity, synergistic emulsification, enhanced wettability alteration ability and coalescence of oil belts. The synergistic effect of the two components of SHC flooding system improved oil displacement efficiency and subsequently enhanced oil recovery.
基金financially supported by the National Natural Science Foundation of China(No.51871043)Fundamental Research Funds for the Central Universities of China(No.N180212010)Liaoning Natural Science Foundation of China(No.2019-MS-113)。
文摘The actual effective partition coefficients of Mg and Cr in a cross-section of a dendrite arm in a direct-chill(DC)-casting ingot of 7475 aluminum alloy are obtained.Meanwhile,by analyzing the microstructure,the mechanism of the heterogeneous distribution of E(Al_(18)Mg_(3)Cr_(2))dispersoids in this DC ingot is revealed.The results show that the actual effective partition coefficients of Mg and Cr are 0.650 and 1.392,respectively,and they describe the heterogeneous distributions of Mg and Cr along the direction of radius of the cross-section of the dendrite arm of the alloy.After homogenization treatment at 470℃ for 24 h,Mg diffuses uniformly,but Cr hardly diffuses.Both the concentrations of Mg and Cr and the sites of heterogeneous nucleation in the alloy are the determinants of the formation of E dispersoids simultaneously.The heat treatment at 250℃ for 72 h provides a large number of the sites of heterogeneous nucleation of the formation of fine E dispersoids that will be formed in the center of the cross-section during the subsequent heat treatment at higher temperature.
基金supported jointly by the project from China Earthquake Admini-stration, the Chinese National Science and Technology Program (2006BAC01B02-03-02)the foundation from Administration Earthquake of Fujian province (200801)
文摘Based on analyses of the spatio-temporal evolutionary characteristics of teleseismic response recorded by Fujian subsurface fluid network and in combination with earthquakes happened in Fujian province during the same period, this paper points out that the step-like rising of water level after distant earthquakes may include some regional stress field information, and the area where water level step-like rises could be the position that the stress concentrated on and where the future earthquakes would occur. If combined with other impending precursors, the location of the events may be predicted to a certain degree.
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0603002)National Natural Science Foundation of China(No.31800358,31700369)+1 种基金Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(19)3099)the Foundation of Jiangsu Vocational College of Agriculture and Forestry(No.2019kj014)。
文摘Detailed information on the spatio-temporal changes of cropland soil organic carbon(SOC) can significantly contribute to the improvement of soil fertility and mitigate climate change. Nonetheless, information and knowledge on the national scale spatio-temporal changes and the corresponding uncertainties of SOC in Chinese upland soils remain limited. The CENTURY model was used to estimate the SOC storages and their changes in Chinese uplands from 1980 to 2010. With the Monte Carlo method, the uncertainties of CENTURY-modelled SOC dynamics associated with the spatial heterogeneous model inputs were quantified. Results revealed that the SOC storage in Chinese uplands increased from 3.03(1.59 to 4.78) Pg C in 1980 to 3.40(2.39 to 4.62) Pg C in 2010. Increment of SOC storage during this period was 370 Tg C, with an uncertainty interval of –440 to 1110 Tg C. The regional disparities of SOC changes reached a significant level, with considerable SOC accumulation in the Huang-Huai-Hai Plain of China and SOC loss in the northeastern China. The SOC lost from Meadow soils, Black soils and Chernozems was most severe, whilst SOC accumulation in Fluvo-aquic soils, Cinnamon soils and Purplish soils was most significant. In modelling large-scale SOC dynamics, the initial soil properties were major sources of uncertainty. Hence, more detailed information concerning the soil properties must be collected. The SOC stock of Chinese uplands in 2010 was still relatively low, manifesting that recommended agricultural management practices in conjunction with effectively economic and policy incentives to farmers for soil fertility improvement were indispensable for future carbon sequestration in these regions.
文摘The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.
基金the National Natural Science Foundation of China(Grant Nos.11974385 and 91956101)the Fund from the Chinese Academy of Sciences(Grant No.1731300500030)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030100).
文摘Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to their potential application in ionic battery.This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation,aggregation of polar and apolar domains in neat RTILs,and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions.At the same time,the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed.This paper also presents the current understanding of how water affects the anion-cation interaction,structural heterogeneities,the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes.
文摘Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes and space-time epidemic processes. This paper seeks to suggest or propose Bayesian spatio-temporal model for modeling and mapping tuberculosis relative risks in space and time as well identify risks factors associated with the tuberculosis and counties in Kenya with high tuberculosis relative risks. In this paper, we used spatio-temporal Bayesian hierarchical models to study the pattern of tuberculosis relative risks in Kenya. The Markov Chain Monte Carlo method via WinBUGS and R packages were used for simulations and estimation of the parameter estimates. The best fitting model is selected using the Deviance Information Criterion proposed by Spiegelhalter and colleagues. Among the spatio-temporal models used, the Knorr-Held model with space-time interaction type III and IV fit the data well but type IV appears better than type III. Variation in tuberculosis risk is observed among Kenya counties and clustering among counties with high tuberculosis relative risks. The prevalence of HIV is identified as the determinant of TB. We found clustering and heterogeneity of TB risk among high rate counties and the overall tuberculosis risk is slightly decreasing from 2002-2009. We proposed that the Knorr-Held model with interaction type IV should be used to model and map Kenyan tuberculosis relative risks. Interaction of TB relative risk in space and time increases among rural counties that share boundaries with urban counties with high tuberculosis risk. This is due to the ability of models to borrow strength from neighboring counties, such that nearby counties have similar risk. Although the approaches are less than ideal, we hope that our study provide a useful stepping stone in the development of spatial and spatio-temporal methodology for the statistical analysis of risk from tuberculosis in Kenya.