The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regio...The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regions and periods vary,and the reasons for this variability are yet to be explained.Thus,in this study,we proposed a new remote sensing ecological vulnerability index by considering moisture,heat,greenness,dryness,land degradation,and social economy indicators and then analyzed and disclosed the spatial and temporal change patterns of ecological vulnerability of the Yellow River Basin,China from 2000 to 2022 and its driving mechanisms.The results showed that the newly proposed remote sensing ecological vulnerability index had a high accuracy,at 86.36%,which indicated a higher applicability in the Yellow River Basin.From 2000 to 2022,the average remote sensing ecological vulnerability index of the Yellow River Basin was 1.03,denoting moderate vulnerability level.The intensive vulnerability area was the most widely distributed,which was mostly located in the northern part of Shaanxi Province and the eastern part of Shanxi Province.From 2000 to 2022,the ecological vulnerability in the Yellow showed an overall stable trend,while that of the central and eastern regions showed an obvious trend of improvement.The gravity center of ecological vulnerability migrated southwest,indicating that the aggravation of ecological vulnerability in the southwestern regions was more severe than in the northeastern regions of the basin.The dominant single factor of changes in ecological vulnerability shifted from normalized difference vegetation index(NDVI)to temperature from 2000 to 2022,and the interaction factors shifted from temperature∩NDVI to temperature∩precipitation,which indicated that the global climate change exerted a more significant impact on regional ecosystems.The above results could provide decision support for the ecological protection and restoration of the Yellow River Basin.展开更多
The surging accumulation of trajectory data has yielded invaluable insights into urban systems,but it has also presented challenges for data storage and management systems.In response,specialized storage systems based...The surging accumulation of trajectory data has yielded invaluable insights into urban systems,but it has also presented challenges for data storage and management systems.In response,specialized storage systems based on non-relational databases have been developed to support large data quantities in distributed approaches.However,these systems often utilize storage by point or storage by trajectory methods,both of which have drawbacks.In this study,we evaluate the effectiveness of segmented trajectory data storage with HBase optimizations for spatio-temporal queries.We develop a prototype system that includes trajectory segmentation,serialization,and spatio-temporal indexing and apply it to taxi trajectory data in Beijing.Ourfindings indicate that the segmented system provides enhanced query speed and reduced memory usage compared to the Geomesa system.展开更多
Nearest Neighbor (κNN) search is one of the most important operations in spatial and spatio-temporal databases. Although it has received considerable attention in the database literature, there is little prior work...Nearest Neighbor (κNN) search is one of the most important operations in spatial and spatio-temporal databases. Although it has received considerable attention in the database literature, there is little prior work on κNN retrieval for moving object trajectories. Motivated by this observation, this paper studies the problem of efficiently processing κNN (κ≥ 1) search on R-tree-like structures storing historical information about moving object trajectories. Two algorithms are developed based on best-first traversal paradigm, called BFPκNN and BFTκNN, which handle the κNN retrieval with respect to the static query point and the moving query trajectory, respectively. Both algorithms minimize the number of node access, that is, they perform a single access only to those qualifying nodes that may contain the final result. Aiming at saving main-memory consumption and reducing CPU cost further, several effective pruning heuristics are also presented. Extensive experiments with synthetic and real datasets confirm that the proposed algorithms in this paper outperform their competitors significantly in both efficiency and scalability.展开更多
Emergency supplies scheduling needs to consider the state of the demanders,and reasonably scheduling and resource allocation are the heart of efficient rescue.Taking rescue time,scheduling cost and demanders’satisfac...Emergency supplies scheduling needs to consider the state of the demanders,and reasonably scheduling and resource allocation are the heart of efficient rescue.Taking rescue time,scheduling cost and demanders’satisfac-tion as goals,in this paper,an emergency supplies scheduling model based on multi-objective optimization was proposed to provide a wealth of decision-making information.Then four multi-objective optimization algorithms are employed to obtain the optimal set of scheduling models.In addition,we design the minimum time cost model and the shortest route cost model by considering the change of the road network status.The extensive simulation experiments are conducted on a real urban traffic dataset.The experimental results show that the two cost models can serve different scheduling needs and provide efficient scheduling for emergency supplies.展开更多
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., tr...Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.展开更多
Purpose–The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.Design/methodology/approach–To deal...Purpose–The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.Design/methodology/approach–To deal with dynamic obstacles for autonomous vehicles during parking,a long-and short-term mixed trajectory planning algorithm is proposed in this paper.In long term,considering obstacle behavior,A-star algorithm was improved by RS curve and potential function via spatio-temporal map to obtain a safe and efficient initial trajectory.In short term,this paper proposes a nonlinear model predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model.Moreover,the proposed method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver.Findings–Compared with the spline optimization method,the results show that the proposed method can generate efficient obstacle avoidance strategies,safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units.Originality/value–It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a dynamic environment.展开更多
Nowadays,autonomous driving has been attracted widespread attention from academia and industry.As we all know,deep learning is effective and essential for the development of AI components of Autonomous Vehicles(AVs).H...Nowadays,autonomous driving has been attracted widespread attention from academia and industry.As we all know,deep learning is effective and essential for the development of AI components of Autonomous Vehicles(AVs).However,it is challenging to adopt multi-source heterogenous data in deep learning.Therefore,we propose a novel data-driven approach for the delivery of high-quality Spatio-Temporal Trajectory Data(STTD)to AVs,which can be deployed to assist the development of AI components with deep learning.The novelty of our work is that the meta-model of STTD is constructed based on the domain knowledge of autonomous driving.Our approach,including collection,preprocessing,storage and modeling of STTD as well as the training of AI components,helps to process and utilize huge amount of STTD efficiently.To further demonstrate the usability of our approach,a case study of vehicle behavior prediction using Long Short-Term Memory(LSTM)networks is discussed.Experimental results show that our approach facilitates the training process of AI components with the STTD.展开更多
A novel approach is introduced for the detection of the location and direction of traffic congestion using GPS data from taxis.This approach uses a dynamic model that conceptualizes events,processes,and states.The sta...A novel approach is introduced for the detection of the location and direction of traffic congestion using GPS data from taxis.This approach uses a dynamic model that conceptualizes events,processes,and states.The states are the locations of the taxis,the processes are the motion of taxis,and the events are congestion.The model is implemented as a graph database,which represents the relationships between states,events,processes,and things(such as points of interest and road grid).Algorithms for constructing and updating the relationships and taxi behaviors dynamic retrieval method in Neo4j are presented and are used to demonstrate the capabilities in dynamic expression and reasoning.An implementation of Shanghai in 2015finally demonstrated the ability of congestion direction detection and the cause searching of traffic congestion.展开更多
基金funded by the National Natural Science Foundation of China(42471329,42101306,42301102)the Natural Science Foundation of Shandong Province(ZR2021MD047)+1 种基金the Scientific Innovation Project for Young Scientists in Shandong Provincial Universities(2022KJ224)the Gansu Youth Science and Technology Fund Program(24JRRA100).
文摘The ecological environment of the Yellow River Basin has become more fragile under the combined action of natural and manmade activities.However,the change mechanisms of ecological vulnerability in different sub-regions and periods vary,and the reasons for this variability are yet to be explained.Thus,in this study,we proposed a new remote sensing ecological vulnerability index by considering moisture,heat,greenness,dryness,land degradation,and social economy indicators and then analyzed and disclosed the spatial and temporal change patterns of ecological vulnerability of the Yellow River Basin,China from 2000 to 2022 and its driving mechanisms.The results showed that the newly proposed remote sensing ecological vulnerability index had a high accuracy,at 86.36%,which indicated a higher applicability in the Yellow River Basin.From 2000 to 2022,the average remote sensing ecological vulnerability index of the Yellow River Basin was 1.03,denoting moderate vulnerability level.The intensive vulnerability area was the most widely distributed,which was mostly located in the northern part of Shaanxi Province and the eastern part of Shanxi Province.From 2000 to 2022,the ecological vulnerability in the Yellow showed an overall stable trend,while that of the central and eastern regions showed an obvious trend of improvement.The gravity center of ecological vulnerability migrated southwest,indicating that the aggravation of ecological vulnerability in the southwestern regions was more severe than in the northeastern regions of the basin.The dominant single factor of changes in ecological vulnerability shifted from normalized difference vegetation index(NDVI)to temperature from 2000 to 2022,and the interaction factors shifted from temperature∩NDVI to temperature∩precipitation,which indicated that the global climate change exerted a more significant impact on regional ecosystems.The above results could provide decision support for the ecological protection and restoration of the Yellow River Basin.
基金support from the National Natural Science Foundation of China(42271471,42201454,41830645)the International Research Center of Big Data for Sustainable Development Goals(CBAS2022GSP06).
文摘The surging accumulation of trajectory data has yielded invaluable insights into urban systems,but it has also presented challenges for data storage and management systems.In response,specialized storage systems based on non-relational databases have been developed to support large data quantities in distributed approaches.However,these systems often utilize storage by point or storage by trajectory methods,both of which have drawbacks.In this study,we evaluate the effectiveness of segmented trajectory data storage with HBase optimizations for spatio-temporal queries.We develop a prototype system that includes trajectory segmentation,serialization,and spatio-temporal indexing and apply it to taxi trajectory data in Beijing.Ourfindings indicate that the segmented system provides enhanced query speed and reduced memory usage compared to the Geomesa system.
文摘Nearest Neighbor (κNN) search is one of the most important operations in spatial and spatio-temporal databases. Although it has received considerable attention in the database literature, there is little prior work on κNN retrieval for moving object trajectories. Motivated by this observation, this paper studies the problem of efficiently processing κNN (κ≥ 1) search on R-tree-like structures storing historical information about moving object trajectories. Two algorithms are developed based on best-first traversal paradigm, called BFPκNN and BFTκNN, which handle the κNN retrieval with respect to the static query point and the moving query trajectory, respectively. Both algorithms minimize the number of node access, that is, they perform a single access only to those qualifying nodes that may contain the final result. Aiming at saving main-memory consumption and reducing CPU cost further, several effective pruning heuristics are also presented. Extensive experiments with synthetic and real datasets confirm that the proposed algorithms in this paper outperform their competitors significantly in both efficiency and scalability.
基金National Key R&D Program of China(No.2017YFC0803300)the National Natural Science of Foundation of China(No.91646201)+2 种基金the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China(No.KM202110037002)the Youth Fund Project of Beijing Wuzi University(No.2020XJQN02)Research Project Plan of China Society of Logistics and China Federation of Logistics and Purchasing(No.2021CSLKT3-247).
文摘Emergency supplies scheduling needs to consider the state of the demanders,and reasonably scheduling and resource allocation are the heart of efficient rescue.Taking rescue time,scheduling cost and demanders’satisfac-tion as goals,in this paper,an emergency supplies scheduling model based on multi-objective optimization was proposed to provide a wealth of decision-making information.Then four multi-objective optimization algorithms are employed to obtain the optimal set of scheduling models.In addition,we design the minimum time cost model and the shortest route cost model by considering the change of the road network status.The extensive simulation experiments are conducted on a real urban traffic dataset.The experimental results show that the two cost models can serve different scheduling needs and provide efficient scheduling for emergency supplies.
基金This work is partly supported by the National Natural Science Foundation of China under Grant No. 61402532, the Science Foundation of China University of Petroleum (Beijing) under Grant No. 2462013YJRC031, and the Excellent Talents of Beijing Program under Grant No. 2013D009051000003.
文摘Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
基金the National Natural Science Foundation of China(Nos.51875184 and 52002163).
文摘Purpose–The purpose of this paper is to develop a real-time trajectory planner with optimal maneuver for autonomous vehicles to deal with dynamic obstacles during parallel parking.Design/methodology/approach–To deal with dynamic obstacles for autonomous vehicles during parking,a long-and short-term mixed trajectory planning algorithm is proposed in this paper.In long term,considering obstacle behavior,A-star algorithm was improved by RS curve and potential function via spatio-temporal map to obtain a safe and efficient initial trajectory.In short term,this paper proposes a nonlinear model predictive control trajectory optimizer to smooth and adjust the trajectory online based on the vehicle kinematic model.Moreover,the proposed method is simulated and verified in four common dynamic parking scenarios by ACADO Toolkit and QPOASE solver.Findings–Compared with the spline optimization method,the results show that the proposed method can generate efficient obstacle avoidance strategies,safe parking trajectories and control parameters such as the front wheel angle and velocity in high-efficient central processing units.Originality/value–It is aimed at improving the robustness of automatic parking system and providing a reference for decision-making in a dynamic environment.
基金supports for this work,provided by the National Natural Science Foundation of China(Grant No.61972153)the National Key Research and Development Program(No.2018YFE0101000)+1 种基金the Key projects of the Ministry of Science and Technology(No.2020AAA0107800)are gratefully acknowledged.
文摘Nowadays,autonomous driving has been attracted widespread attention from academia and industry.As we all know,deep learning is effective and essential for the development of AI components of Autonomous Vehicles(AVs).However,it is challenging to adopt multi-source heterogenous data in deep learning.Therefore,we propose a novel data-driven approach for the delivery of high-quality Spatio-Temporal Trajectory Data(STTD)to AVs,which can be deployed to assist the development of AI components with deep learning.The novelty of our work is that the meta-model of STTD is constructed based on the domain knowledge of autonomous driving.Our approach,including collection,preprocessing,storage and modeling of STTD as well as the training of AI components,helps to process and utilize huge amount of STTD efficiently.To further demonstrate the usability of our approach,a case study of vehicle behavior prediction using Long Short-Term Memory(LSTM)networks is discussed.Experimental results show that our approach facilitates the training process of AI components with the STTD.
基金supported by National Natural Science Foundation of China[grant number 42071364 and 41631175].
文摘A novel approach is introduced for the detection of the location and direction of traffic congestion using GPS data from taxis.This approach uses a dynamic model that conceptualizes events,processes,and states.The states are the locations of the taxis,the processes are the motion of taxis,and the events are congestion.The model is implemented as a graph database,which represents the relationships between states,events,processes,and things(such as points of interest and road grid).Algorithms for constructing and updating the relationships and taxi behaviors dynamic retrieval method in Neo4j are presented and are used to demonstrate the capabilities in dynamic expression and reasoning.An implementation of Shanghai in 2015finally demonstrated the ability of congestion direction detection and the cause searching of traffic congestion.