期刊文献+
共找到131,885篇文章
< 1 2 250 >
每页显示 20 50 100
Improved spatio-temporal alignment measurement method for hull deformation
1
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
下载PDF
基于多尺度Laws纹理能量和低秩分解的织物疵点检测算法
2
作者 王振华 张周强 +1 位作者 昝杰 刘江浩 《纺织学报》 EI CAS CSCD 北大核心 2024年第4期96-104,共9页
为提高织物疵点检测算法对简单纹理织物、模式纹理织物及条纹纹理织物检测时的普适性和准确性,提出了一种基于多尺度Laws纹理能量和低秩分解的织物疵点检测算法。首先,对织物图像进行直方图均衡化并将处理后的图像均匀划分为子图像块;其... 为提高织物疵点检测算法对简单纹理织物、模式纹理织物及条纹纹理织物检测时的普适性和准确性,提出了一种基于多尺度Laws纹理能量和低秩分解的织物疵点检测算法。首先,对织物图像进行直方图均衡化并将处理后的图像均匀划分为子图像块;其次,对每个子图像块提取28个纹理能量特征(利用7个Laws滤波模板在4个尺度上提取),计算所有子图像块提取到的特征均值并组成特征矩阵;然后,利用特征矩阵构建低秩分解模型,通过方向交替方法(ADM)优化求解,得到低秩部分和稀疏部分;最后,由稀疏部分生成疵点显著图,采用迭代阈值分割法对其进行分割,得到织物疵点检测结果。为验证该算法的有效性,在织物图像数据集选取了包含错纬、断经、跳花、破洞等常见疵点的织物图像,并将实验结果与已有3种算法进行了对比。实验结果表明,该算法在简单纹理织物、模式纹理织物及条纹纹理织物检测上具有更好的普适性和准确性,且检测效率具有一定优势。 展开更多
关键词 织物疵点 疵点检测 laws纹理 纹理能量 特征提取 矩阵低秩分解
下载PDF
Epidemic Characteristics and Spatio-Temporal Patterns of HFRS in Qingdao City,China,2010-2022
3
作者 Ying Li Runze Lu +8 位作者 Liyan Dong Litao Sun Zongyi Zhang Yating Zhao Qing Duan Lijie Zhang Fachun Jiang Jing Jia Huilai Ma 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第9期1015-1029,共15页
Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingda... Objective This study investigated the epidemic characteristics and spatio-temporal dynamics of hemorrhagic fever with renal syndrome(HFRS)in Qingdao City,China.Methods Information was collected on HFRS cases in Qingdao City from 2010 to 2022.Descriptive epidemiologic,seasonal decomposition,spatial autocorrelation,and spatio-temporal cluster analyses were performed.Results A total of 2,220 patients with HFRS were reported over the study period,with an average annual incidence of 1.89/100,000 and a case fatality rate of 2.52%.The male:female ratio was 2.8:1.75.3%of patients were aged between 16 and 60 years old,75.3%of patients were farmers,and 11.6%had both“three red”and“three pain”symptoms.The HFRS epidemic showed two-peak seasonality:the primary fall-winter peak and the minor spring peak.The HFRS epidemic presented highly spatially heterogeneous,street/township-level hot spots that were mostly distributed in Huangdao,Pingdu,and Jiaozhou.The spatio-temporal cluster analysis revealed three cluster areas in Qingdao City that were located in the south of Huangdao District during the fall-winter peak.Conclusion The distribution of HFRS in Qingdao exhibited periodic,seasonal,and regional characteristics,with high spatial clustering heterogeneity.The typical symptoms of“three red”and“three pain”in patients with HFRS were not obvious. 展开更多
关键词 Hemorrhagic fever with renal syndrome Epidemic characteristics spatio-temporal distribution
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
4
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism
5
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
下载PDF
Warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography
6
作者 Pengyu Hu Jiangpeng Wu +3 位作者 Zhengang Yan Meng He Chao Liang Hao Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期162-172,共11页
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it... High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%. 展开更多
关键词 Warhead fragment measurement High speed photography Stereo vision Multi-object tracking spatio-temporal reconstruction
下载PDF
Scaling Laws Behind Penetrative Turbulence:History and Perspectives
7
作者 Zijing DING Ruiqi HUANG Zhen OUYANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1881-1900,共20页
An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather condi... An unstably stratified flow entering into a stably stratified flow is referred to as penetrative convection,which is crucial to many physical processes and has been thought of as a key factor for extreme weather conditions.Past theoretical,numerical,and experimental studies on penetrative convection are reviewed,along with field studies providing insights into turbulence modeling.The physical factors that initiate penetrative convection,including internal heat sources,nonlinear constitutive relationships,centrifugal forces and other complicated factors are summarized.Cutting-edge methods for understanding transport mechanisms and statistical properties of penetrative turbulence are also documented,e.g.,the variational approach and quasilinear approach,which derive scaling laws embedded in penetrative turbulence.Exploring these scaling laws in penetrative convection can improve our understanding of large-scale geophysical and astrophysical motions.To better the model of penetrative turbulence towards a practical situation,new directions,e.g.,penetrative convection in spheres,and radiation-forced convection,are proposed. 展开更多
关键词 thermal convection penetrative convection scaling law TURBULENCE
下载PDF
A cloud model target damage effectiveness assessment algorithm based on spatio-temporal sequence finite multilayer fragments dispersion
8
作者 Hanshan Li Xiaoqian Zhang Junchai Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期48-64,共17页
To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage p... To solve the problem of target damage assessment when fragments attack target under uncertain projectile and target intersection in an air defense intercept,this paper proposes a method for calculating target damage probability leveraging spatio-temporal finite multilayer fragments distribution and the target damage assessment algorithm based on cloud model theory.Drawing on the spatial dispersion characteristics of fragments of projectile proximity explosion,we divide into a finite number of fragments distribution planes based on the time series in space,set up a fragment layer dispersion model grounded in the time series and intersection criterion for determining the effective penetration of each layer of fragments into the target.Building on the precondition that the multilayer fragments of the time series effectively assail the target,we also establish the damage criterion of the perforation and penetration damage and deduce the damage probability calculation model.Taking the damage probability of the fragment layer in the spatio-temporal sequence to the target as the input state variable,we introduce cloud model theory to research the target damage assessment method.Combining the equivalent simulation experiment,the scientific and rational nature of the proposed method were validated through quantitative calculations and comparative analysis. 展开更多
关键词 Target damage Cloud model Fragments dispersion Effectiveness assessment spatio-temporal sequence
下载PDF
Spatio-temporal Pattern of Cropland Abandonment in Hilly and Mountainous Areas:A Case Study of Jiangxi,China
9
作者 WEN Jiaming XIE Hualin 《Journal of Resources and Ecology》 CSCD 2024年第5期1311-1323,共13页
Cropland abandonment is common and widely distributed in hilly and mountainous areas.Clarifying the current situation and development of cropland abandonment can provide reference for the rational and classified manag... Cropland abandonment is common and widely distributed in hilly and mountainous areas.Clarifying the current situation and development of cropland abandonment can provide reference for the rational and classified management of cropland abandonment in hilly and mountainous areas.Taking Jiangxi Province as the study area,and using the Google Earth Engine and Landsat data,the scale and years of abandoned cropland from 2002 to 2020 were calculated by using the random forest classifier and rules for identifying cropland abandonment.The spatio-temporal pattern of cropland abandonment at the county level was analyzed.The results indicated that the overall accuracy of land use classification was over 90%.The cropland abandonment rate ranged from 3%to 5.5%from 2002 to 2020,while the cropland abandonment rate was highest in 2013 and showed a downward trend after 2017.Among the years,the area of first-time abandoned cropland was the largest in 2005.The distribution of the cropland abandonment rate was low in the middle and north,but high in the surrounding area and the south.A notable positive spatial correlation was observed in the cropland abandonment rate,with a gradual intensification of spatial clustering.The LISA cluster map revealed a significant north-south disparity,exhibiting an incremental trend over time in the characteristics of the“High-High”cluster in the Southeastern Mountainous Area and the“Low-Low”cluster in the Poyang Lake Hilly Plain in Jiangxi.The results of this study can provide data for extracting spatial information and analyzing the driving factors of cropland abandonment in hilly and mountainous areas,and they can also provide a basis for the development of policies for the utilization and classification management of abandoned cropland. 展开更多
关键词 cropland abandonment Google Earth Engine hilly and mountainous areas spatio-temporal pattern Jiangxi Province
原文传递
Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids
10
作者 Tong Zu Fengyong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1395-1417,共23页
False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work u... False data injection attack(FDIA)can affect the state estimation of the power grid by tampering with the measured value of the power grid data,and then destroying the stable operation of the smart grid.Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams.Data-driven features,however,cannot effectively capture the differences between noisy data and attack samples.As a result,slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks.To address this problem,this paper designs a deep collaborative self-attention network to achieve robust FDIA detection,in which the spatio-temporal features of cascaded FDIA attacks are fully integrated.Firstly,a high-order Chebyshev polynomials-based graph convolution module is designed to effectively aggregate the spatio information between grid nodes,and the spatial self-attention mechanism is involved to dynamically assign attention weights to each node,which guides the network to pay more attention to the node information that is conducive to FDIA detection.Furthermore,the bi-directional Long Short-Term Memory(LSTM)network is introduced to conduct time series modeling and long-term dependence analysis for power grid data and utilizes the temporal selfattention mechanism to describe the time correlation of data and assign different weights to different time steps.Our designed deep collaborative network can effectively mine subtle perturbations from spatiotemporal feature information,efficiently distinguish power grid noise from FDIA attacks,and adapt to diverse attack intensities.Extensive experiments demonstrate that our method can obtain an efficient detection performance over actual load data from New York Independent System Operator(NYISO)in IEEE 14,IEEE 39,and IEEE 118 bus systems,and outperforms state-of-the-art FDIA detection schemes in terms of detection accuracy and robustness. 展开更多
关键词 False data injection attacks smart grid deep learning self-attention mechanism spatio-temporal fusion
下载PDF
Nonuniform Dependence on the Initial Data for Solutions of Conservation Laws
11
作者 John M.Holmes Barbara Lee Keyfitz 《Communications on Applied Mathematics and Computation》 EI 2024年第1期489-500,共12页
In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results a... In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations. 展开更多
关键词 Conservation laws Data-to-solution map Nonuniform dependence
下载PDF
Literature overview of basic characteristics and flotation laws of flocs
12
作者 Wanzhong Yin Yu Xie Zhanglei Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期943-958,共16页
Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by t... Flocculation flotation is the most efficient method for recovering fine-grained minerals,and its essence lies in flotation and recovery of flocs.Fundamental physical characteristics of flocs are mainly determined by their apparent particle size and structure(density and morphology).Substantial researches have been conducted regarding the effect of floc characteristics on particle settling and water treatment.However,the influence of floc characteristics on flotation has not been widely studied.Based on the floc formation and flocculation flotation,this study reviews the fundamental physical characteristics of flocs from the perspectives of floc particle size and structure,summarizing the interaction between floc particle size and structure.Moreover,it thoroughly discusses the effect of floc particle size and structure on floc floatability,further revealing the influence of floc characteristics on bubble collision and adhesion and elucidating the mechanisms of interaction between flocs and bubbles.Thus,it is observed that floc particle size is not the only factor influencing flocculation flotation.Within the appropriate apparent particle size range,flocs with a compact structure exhibit higher efficiency in bubble collision and adhesion during flotation,thereby resulting in enhanced flotation performance.This study aims to provide a reference for flocculation flotation,targeting the development of more efficient and refined flocculation flotation processes in the future. 展开更多
关键词 FLOCS basic characteristics particle size and structure flotation laws BUBBLES
下载PDF
Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws
13
作者 Feng Zheng Jianxian Qiu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期605-624,共20页
In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ... In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme. 展开更多
关键词 Finite volume Dimension by dimension HWENO Hyperbolic conservation laws
下载PDF
On the Use of Monotonicity-Preserving Interpolatory Techniques in Multilevel Schemes for Balance Laws
14
作者 Antonio Baeza Rosa Donat Anna Martinez-Gavara 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1319-1341,共23页
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ... Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws. 展开更多
关键词 Hyperbolic balance laws Well-balanced schemes Multilevel schemes Harten's multiresolution
下载PDF
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
15
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 spatio-temporal prediction infectious diseases graph neural networks
下载PDF
Spatio-Temporal Change of Dispersal Areas of Greater Kudu (Tragelaphus strepsiceros) in Lake Bogoria Landscape, Kenya
16
作者 Beatrice Chepkoech Cheserek George Morara Ogendi Paul Mutua Makenzi 《Open Journal of Ecology》 2024年第3期183-198,共16页
Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last... Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods. 展开更多
关键词 spatio-temporal Change Dispersal Greater Kudu (Tragelaphus Strepsiceros) Point Pattern Analysis (PPA) GIS
下载PDF
Research on the Spatio-Temporal Evolution and Driving Forces of Green Spaces in the Central Urban Area of Zunyi City
17
作者 Juan Du 《Journal of Architectural Research and Development》 2024年第4期8-16,共9页
Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of... Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of the spatial mismatch between high demand and low supply,it is of great significance to clarify the evolution mechanism of green space to undertake national spatial planning,protect the natural strategic resources in the urban fringe area,and promote the sustainable development of the“three living spaces.”The study focuses on the Zunyi City Center,selecting the 20 years of rapid development following its establishment as a city as the study period.It explores the dynamic evolution of green space and the main driving forces during different periods using remote-sensing image data.The study shows that from 2003 to 2023,the total scale of green space has an obvious decreasing trend along with the expansion of the urban built-up area.A large amount of arable land is being converted to construction land,resulting in a sudden decrease in arable land area.In the past 10 years,the comprehensive land use dynamics have accelerated.Still,the spatial difference has gradually narrowed,indicating that the overall development intensity of Zunyi City’s central urban area has increased.There is a gradual spread of the trend to the hilly areas.The limiting effect of the mountainous natural environment on the city’s development has gradually diminished under the superposition of external factors,such as economic development,industrial technological upgrading,and policy orientation so the importance of the effective protection and rational utilization of urban green space has become more prominent. 展开更多
关键词 Green space spatio-temporal evolution Driving force Zunyi city center
下载PDF
Traveling Wave Solutions of a SIR Epidemic Model with Spatio-Temporal Delay
18
作者 Zhihe Hou 《Journal of Applied Mathematics and Physics》 2024年第10期3422-3438,共17页
In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of t... In this paper, we studied the traveling wave solutions of a SIR epidemic model with spatial-temporal delay. We proved that this result is determined by the basic reproduction number R0and the minimum wave speed c*of the corresponding ordinary differential equations. The methods used in this paper are primarily the Schauder fixed point theorem and comparison principle. We have proved that when R0>1and c>c*, the model has a non-negative and non-trivial traveling wave solution. However, for R01and c≥0or R0>1and 0cc*, the model does not have a traveling wave solution. 展开更多
关键词 Susceptible-Infected-Recovered Epidemic Model Traveling Wave Solutions spatio-temporal Delay Schauder Fixed Point Theorem
下载PDF
基于Laws与Gabor滤波的田间西兰花花球识别技术 被引量:3
19
作者 赵雄 徐港吉 +2 位作者 陈建能 俞高红 代丽 《农业机械学报》 EI CAS CSCD 北大核心 2023年第4期313-322,共10页
正确识别西兰花田间位置是实现西兰花自动化采收的基础,西兰花花球颜色与植株的叶片、茎秆相似,仅通过颜色特征无法对西兰花进行识别,本文以成熟期的田间西兰花为研究对象,提出了一种基于纹理特征与颜色特征的西兰花识别算法。首先通过... 正确识别西兰花田间位置是实现西兰花自动化采收的基础,西兰花花球颜色与植株的叶片、茎秆相似,仅通过颜色特征无法对西兰花进行识别,本文以成熟期的田间西兰花为研究对象,提出了一种基于纹理特征与颜色特征的西兰花识别算法。首先通过预处理以及Laws滤波对图像进行边界纹理强化,再通过Gabor滤波对图像进行纹理特征向量提取,并对提取后的纹理特征向量进行z⁃score标准化,随后对标准化后的纹理特征向量进行K⁃means聚类与开运算,获取花球潜在存在区域。同时对RGB图像进行HSV转换,通过对图像的H分量进行阈值分割达到滤除地面像素的效果。最终对纹理特征识别与颜色特征识别的结果进行融合,实现对田间西兰花的识别。算法通过结合纹理与颜色特征,对田间西兰花进行了识别,解决了西兰花的花球与茎叶等背景颜色相近难以识别的问题。本文共使用792幅图像进行试验,试验结果表明,本方法可以准确地对西兰花田间图像进行识别,其精确率为96.96%,召回率为94.41%,F1值为95.67%。通过对3组不同拍摄环境的数据集进行算法识别,3组数据集的F1值始终保持在94%以上,具有良好的拍摄环境适应性,为农业机器人进行西兰花自动化采收奠定了基础。 展开更多
关键词 图像识别 西兰花 纹理强化 laws滤波 GABOR滤波
下载PDF
Leveraging Transfer Learning for Spatio-Temporal Human Activity Recognition from Video Sequences 被引量:1
20
作者 Umair Muneer Butt Hadiqa Aman Ullah +3 位作者 Sukumar Letchmunan Iqra Tariq Fadratul Hafinaz Hassan Tieng Wei Koh 《Computers, Materials & Continua》 SCIE EI 2023年第3期5017-5033,共17页
Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments... Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments and anthropometric differences between individuals make it harder to recognize actions.This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications.It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network.Moreover,the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information.Six state-of-the-art pre-trained models are exploited to find the best model for spatial feature extraction.For temporal sequence,this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short TermMemory(BiLSTM)to capture longtermdependencies.Two state-of-the-art datasets,UCF101 and HMDB51,are used for evaluation purposes.In addition,seven state-of-the-art optimizers are used to fine-tune the proposed network parameters.Furthermore,this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network(CNN),where two streams use RGB data.In contrast,the other uses optical flow images.Finally,the proposed ensemble approach using max hard voting outperforms state-ofthe-art methods with 96.30%and 90.07%accuracies on the UCF101 and HMDB51 datasets. 展开更多
关键词 Human activity recognition deep learning transfer learning neural network ensemble learning spatio-temporal
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部