期刊文献+
共找到29,959篇文章
< 1 2 250 >
每页显示 20 50 100
ST-SIGMA:Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting
1
作者 Yang Fang Bei Luo +3 位作者 Ting Zhao Dong He Bingbing Jiang Qilie Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期744-757,共14页
Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges... Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios. 展开更多
关键词 feature fusion graph interaction hierarchical aggregation scene perception scene semantics trajectory forecasting
下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
2
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
3
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism
4
作者 Zhijun Guo Yun Sun +2 位作者 YingWang Chaoqi Fu Jilong Zhong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2375-2398,共24页
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne... Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution. 展开更多
关键词 RESILIENCE cooperative mission FANET spatio-temporal node pooling multi-head attention graph network
下载PDF
Warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography
5
作者 Pengyu Hu Jiangpeng Wu +3 位作者 Zhengang Yan Meng He Chao Liang Hao Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期162-172,共11页
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it... High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%. 展开更多
关键词 Warhead fragment measurement High speed photography Stereo vision Multi-object tracking spatio-temporal reconstruction
下载PDF
Enhancing Deep Learning Semantics:The Diffusion Sampling and Label-Driven Co-Attention Approach
6
作者 ChunhuaWang Wenqian Shang +1 位作者 Tong Yi Haibin Zhu 《Computers, Materials & Continua》 SCIE EI 2024年第5期1939-1956,共18页
The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-atten... The advent of self-attention mechanisms within Transformer models has significantly propelled the advancement of deep learning algorithms,yielding outstanding achievements across diverse domains.Nonetheless,self-attention mechanisms falter when applied to datasets with intricate semantic content and extensive dependency structures.In response,this paper introduces a Diffusion Sampling and Label-Driven Co-attention Neural Network(DSLD),which adopts a diffusion sampling method to capture more comprehensive semantic information of the data.Additionally,themodel leverages the joint correlation information of labels and data to introduce the computation of text representation,correcting semantic representationbiases in thedata,andincreasing the accuracyof semantic representation.Ultimately,the model computes the corresponding classification results by synthesizing these rich data semantic representations.Experiments on seven benchmark datasets show that our proposed model achieves competitive results compared to state-of-the-art methods. 展开更多
关键词 semantic representation sampling attention label-driven co-attention attention mechanisms
下载PDF
Multi-Scale Location Attention Model for Spatio-Temporal Prediction of Disease Incidence
7
作者 Youshen Jiang Tongqing Zhou +2 位作者 Zhilin Wang Zhiping Cai Qiang Ni 《Intelligent Automation & Soft Computing》 2024年第3期585-597,共13页
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th... Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction. 展开更多
关键词 spatio-temporal prediction infectious diseases graph neural networks
下载PDF
Spatio-Temporal Change of Dispersal Areas of Greater Kudu (Tragelaphus strepsiceros) in Lake Bogoria Landscape, Kenya
8
作者 Beatrice Chepkoech Cheserek George Morara Ogendi Paul Mutua Makenzi 《Open Journal of Ecology》 2024年第3期183-198,共16页
Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last... Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods. 展开更多
关键词 spatio-temporal Change Dispersal Greater Kudu (Tragelaphus Strepsiceros) Point Pattern Analysis (PPA) GIS
下载PDF
Research on the Spatio-Temporal Evolution and Driving Forces of Green Spaces in the Central Urban Area of Zunyi City
9
作者 Juan Du 《Journal of Architectural Research and Development》 2024年第4期8-16,共9页
Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of... Green space,as a medium for carrying out urban functions and guiding urban development,is becoming a scarce resource along with the urbanization process and the intensification of environmental problems.In the face of the spatial mismatch between high demand and low supply,it is of great significance to clarify the evolution mechanism of green space to undertake national spatial planning,protect the natural strategic resources in the urban fringe area,and promote the sustainable development of the“three living spaces.”The study focuses on the Zunyi City Center,selecting the 20 years of rapid development following its establishment as a city as the study period.It explores the dynamic evolution of green space and the main driving forces during different periods using remote-sensing image data.The study shows that from 2003 to 2023,the total scale of green space has an obvious decreasing trend along with the expansion of the urban built-up area.A large amount of arable land is being converted to construction land,resulting in a sudden decrease in arable land area.In the past 10 years,the comprehensive land use dynamics have accelerated.Still,the spatial difference has gradually narrowed,indicating that the overall development intensity of Zunyi City’s central urban area has increased.There is a gradual spread of the trend to the hilly areas.The limiting effect of the mountainous natural environment on the city’s development has gradually diminished under the superposition of external factors,such as economic development,industrial technological upgrading,and policy orientation so the importance of the effective protection and rational utilization of urban green space has become more prominent. 展开更多
关键词 Green space spatio-temporal evolution Driving force Zunyi city center
下载PDF
Marine spatio-temporal process semantics and its applications-taking the El Nio Southern Oscilation process and Chinese rainfall anomaly as an example 被引量:4
10
作者 XUE Cunjin DONG Qing XIE Jiong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第2期16-24,共9页
Spatio-temporal semantics based on "object views" or "event views" has few abilities to represent and model the continuity and gradual oceanic phenomena or objects, which seriously limits the specific marine appli... Spatio-temporal semantics based on "object views" or "event views" has few abilities to represent and model the continuity and gradual oceanic phenomena or objects, which seriously limits the specific marine applications and knowledge discovery and data mining, so this paper proposes a hierarchical abstraction semantics with "marine spatio-temporal process-life span phases-evolution sequences--state units" and process objects included by level with "marine process objects--phase objects--sequence object---state objects" with the oceanic process characteristics into the marine process semantics. In addition, this paper designs the storage and representation of marine process objects using the backus normal forms (BNF) and abstract data type (ADT). Base on E1 Nifio Southern Oscilation (ENSO) index and Chinese rain gauging station data, this paper also gives a case of study. The spatio-temporal analysis between ENSO process and Chinese rainfall anomalies shows that the marine spatio-temporal semantics not only can illustrate the spatial distribution of Chinese rainfall anomalies in different time scales at ENSO process, life span phases and state units, but also analyze the dynamic changes of Chinese rainfall anomalies in different life span phases or state units within ENSO evolution. 展开更多
关键词 marine process semantics hierarchical abstraction and inclusion by level ENSO proc ess rainfall anomalies
下载PDF
Spatio-temporal GIS Data Model Based on Event Semantics 被引量:5
11
作者 XUZhihong BIANFuling 《Geo-Spatial Information Science》 2003年第3期43-47,共5页
There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way fo... There are mainly four kinds of models to record and deal with historical information. By taking them as reference, the spatio-temporal model based on event semantics is proposed. In this model, according to the way for describing an event, all the information are divided into five domains. This paper describes the model by using the land parcel change in the cadastral information system, and expounds the model by using five tables corresponding to the five domains. With the aid of this model, seven examples are given on historical query, trace back and recurrence. This model can be implemented either in the extended relational database or in the object-oriented database. 展开更多
关键词 event semantics temporal GIS MODEL
下载PDF
Leveraging Transfer Learning for Spatio-Temporal Human Activity Recognition from Video Sequences 被引量:1
12
作者 Umair Muneer Butt Hadiqa Aman Ullah +3 位作者 Sukumar Letchmunan Iqra Tariq Fadratul Hafinaz Hassan Tieng Wei Koh 《Computers, Materials & Continua》 SCIE EI 2023年第3期5017-5033,共17页
Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments... Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments and anthropometric differences between individuals make it harder to recognize actions.This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications.It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network.Moreover,the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information.Six state-of-the-art pre-trained models are exploited to find the best model for spatial feature extraction.For temporal sequence,this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short TermMemory(BiLSTM)to capture longtermdependencies.Two state-of-the-art datasets,UCF101 and HMDB51,are used for evaluation purposes.In addition,seven state-of-the-art optimizers are used to fine-tune the proposed network parameters.Furthermore,this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network(CNN),where two streams use RGB data.In contrast,the other uses optical flow images.Finally,the proposed ensemble approach using max hard voting outperforms state-ofthe-art methods with 96.30%and 90.07%accuracies on the UCF101 and HMDB51 datasets. 展开更多
关键词 Human activity recognition deep learning transfer learning neural network ensemble learning spatio-temporal
下载PDF
Relationship between spatio-temporal evolution of soil pH and geological environment/surface cover in the eastern Nenjiang River Basin of Northeast China during the past 30 years 被引量:2
13
作者 Guo-dong Liu Ming-hui Wei +3 位作者 Ze Yang Hong-ye Xiao Yi-he Zhang Na-na Fang 《China Geology》 CAS CSCD 2023年第3期369-382,共14页
To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second ... To illuminate the spatio-temporal variation characteristics and geochemical driving mechanism of soil pH in the Nenjiang River Basin,the National Multi-objective Regional Geochemical Survey data of topsoil,the Second National Soil Survey data and Normalized Difference Vegetation Index(NDVI)were analyzed.The areas of neutral and alkaline soil decreased by 21100 km^(2)and 30500 km^(2),respectively,while that of strongly alkaline,extremely alkaline,and strongly acidic soil increased by 19600 km^(2),18200 km^(2),and 15500 km^(2),respectively,during the past 30 years.NDVI decreased with the increase of soil pH when soil pH>8.0,and it was reversed when soil pH<5.0.There were significant differences in soil pH with various surface cover types,which showed an ascending order:Arbor<reed<maize<rice<high and medium-covered meadow<low-covered meadow<Puccinellia.The weathering products of minerals rich in K_(2)O,Na_(2)O,CaO,and MgO entered into the low plain and were enriched in different parts by water transportation and lake deposition,while Fe and Al remained in the low hilly areas,which was the geochemical driving mechanism.The results of this study will provide scientific basis for making scientific and rational decisions on soil acidification and salinization. 展开更多
关键词 Soil pH spatio-temporal variation Surface cover Soybean-maize-rice Woodland-grassland-wetland Saline-alkali land-sandy land Geological environment Land quality geochemical survey engineering Nenjiang River Basin
下载PDF
Spatio-Temporal Analysis of Drought in the North-Eastern Coastal Region of Vietnam Using the Standardized Precipitation Index (SPI)
14
作者 Nguyen Van Tuan Nguyen Van Hieu +5 位作者 Nguyen Khac Bang Pham Hoang Hai Nguyen Khanh Van Le Vinh Ha Tran Thi Hoa Lê Trọng Hiếu 《Atmospheric and Climate Sciences》 CAS 2023年第2期175-200,共26页
Spatio-temporal analysis of drought provides valuable information for drought management and damage mitigation. In this study, the Standardized Precipitation Index at the time scale of 6 months (SPI-6) is selected to ... Spatio-temporal analysis of drought provides valuable information for drought management and damage mitigation. In this study, the Standardized Precipitation Index at the time scale of 6 months (SPI-6) is selected to reflect drought conditions in the North-Eastern coastal region of Vietnam. The drought events and their characteristics from 1981 to 2019 are detected at 9 meteorological stations and 10 Chirps rainfall stations. The spatio-temporal variation of drought in the study region is analyzed on the basis of the number, duration, severity, intensity, and peak of the detected drought events at the 19 stations. The results show that from 1981 to 2019 the drought events mainly occurred with 1-season duration and moderate intensity and peak. The number, duration, severity, and peak of the drought events were the greatest in the period 2001-2010 and were the smallest in the period 2011-2019. Among the 19 stations, the drought duration tends to decrease at 11 stations, increase at 7 stations, and has a slight variant at 1 station;the drought severity tends to decrease at 14 stations, increase at 4 stations, and has not a significant trend at 1 station;the drought intensity tends to decrease at 17 stations, increase at 1 station, and has a slight variant at 1 station;and the drought peak tends to decrease at 18 stations and increase at 1 station. 展开更多
关键词 spatio-temporal Analysis of Drought Standardized Precipitation Index (SPI) Drought Characteristics
下载PDF
Information-Theoretic Limits on Compression of Semantic Information
15
作者 Tang Jiancheng Yang Qianqian Zhang Zhaoyang 《China Communications》 SCIE CSCD 2024年第7期1-16,共16页
As conventional communication systems based on classic information theory have closely approached Shannon capacity,semantic communication is emerging as a key enabling technology for the further improvement of communi... As conventional communication systems based on classic information theory have closely approached Shannon capacity,semantic communication is emerging as a key enabling technology for the further improvement of communication performance.However,it is still unsettled on how to represent semantic information and characterise the theoretical limits of semantic-oriented compression and transmission.In this paper,we consider a semantic source which is characterised by a set of correlated random variables whose joint probabilistic distribution can be described by a Bayesian network.We give the information-theoretic limit on the lossless compression of the semantic source and introduce a low complexity encoding method by exploiting the conditional independence.We further characterise the limits on lossy compression of the semantic source and the upper and lower bounds of the rate-distortion function.We also investigate the lossy compression of the semantic source with two-sided information at the encoder and decoder,and obtain the corresponding rate distortion function.We prove that the optimal code of the semantic source is the combination of the optimal codes of each conditional independent set given the side information. 展开更多
关键词 rate distortion semantic communication semantic compression
下载PDF
基于Semantic Turkey的主题词表及本体构建应用研究
16
作者 姚晓娜 王思丽 张旺强 《数字图书馆论坛》 2024年第5期28-34,共7页
主题词表及本体是语义化知识管理系统的基础数据支撑,对领域知识的语义化组织及知识图谱的构建具有重要意义。在建设公共危机案例知识集成平台的过程中,采用开源软件Semantic Turkey开发主题词表及本体构建功能,并在此基础上实现规范数... 主题词表及本体是语义化知识管理系统的基础数据支撑,对领域知识的语义化组织及知识图谱的构建具有重要意义。在建设公共危机案例知识集成平台的过程中,采用开源软件Semantic Turkey开发主题词表及本体构建功能,并在此基础上实现规范数据录入、词表导航、知识映射等功能,从而支持进一步的语义检索和知识推理。构建的主题词表及本体模型基于语义网标准与技术,具有良好的规范性和互操作性。开源软件Semantic Turkey提供了功能完备的应用程序编程接口,与完全自主开发相比,降低了开发成本,缩短了开发时间,为语义化知识管理系统的开发工作提供新思路和参考依据。 展开更多
关键词 主题词表 本体 semantic Turkey SKOS OWL
下载PDF
Dynamic Spatio-Temporal Modeling in Disease Mapping
17
作者 Flavian Awere Otieno Cox Lwaka Tamba +1 位作者 Justin Obwoge Okenye Luke Akong’o Orawo 《Open Journal of Statistics》 2023年第6期893-916,共24页
Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a... Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties. 展开更多
关键词 spatio-temporal Model Matern Exponential Covariance Function Spatial and Temporal Dependencies Markov Chain Monte Carlo (MCMC)
下载PDF
“stppSim”: A Novel Analytical Tool for Creating Synthetic Spatio-Temporal Point Data
18
作者 Monsuru Adepeju 《Open Journal of Modelling and Simulation》 2023年第4期99-116,共18页
In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotempor... In crime science, understanding the dynamics and interactions between crime events is crucial for comprehending the underlying factors that drive their occurrences. Nonetheless, gaining access to detailed spatiotemporal crime records from law enforcement faces significant challenges due to confidentiality concerns. In response to these challenges, this paper introduces an innovative analytical tool named “stppSim,” designed to synthesize fine-grained spatiotemporal point records while safeguarding the privacy of individual locations. By utilizing the open-source R platform, this tool ensures easy accessibility for researchers, facilitating download, re-use, and potential advancements in various research domains beyond crime science. 展开更多
关键词 OPEN-SOURCE Synthetic Data CRIME spatio-temporal Patterns Data Privacy
下载PDF
Part-Whole Relational Few-Shot 3D Point Cloud Semantic Segmentation
19
作者 Shoukun Xu Lujun Zhang +2 位作者 Guangqi Jiang Yining Hua Yi Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3021-3039,共19页
This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation an... This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation and inaccurate semantic discrimination.To tackle these issues,we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity,which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks(CapsNets)in the embedding network.Concretely,the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature representations,which capture the relationships between object parts and their wholes.Secondly,we designed a multi-prototype enhancement module to enhance the prototype discriminability.Specifically,the single-prototype enhancement mechanism is expanded to the multi-prototype enhancement version for capturing rich semantics.Besides,the shot-correlation within the category is calculated via the interaction of different samples to enhance the intra-category similarity.Ablation studies prove that the involved part-whole relations and proposed multi-prototype enhancement module help to achieve complete object segmentation and improve semantic discrimination.Moreover,under the integration of these two modules,quantitative and qualitative experiments on two public benchmarks,including S3DIS and ScanNet,indicate the superior performance of the proposed framework on the task of 3D point cloud semantic segmentation,compared to some state-of-the-art methods. 展开更多
关键词 Few-shot point cloud semantic segmentation CapsNets
下载PDF
CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation
20
作者 Qixiang Tong Zhipeng Zhu +2 位作者 Min Zhang Kerui Cao Haihua Xing 《Computers, Materials & Continua》 SCIE EI 2024年第4期1353-1375,共23页
High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the d... High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks. 展开更多
关键词 semantic segmentation remote sensing multiscale self-attention
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部