Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most cruci...Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.展开更多
Urban public infrastructure is an important basis for urban development.It is of great significance to deepen the research on intelligent management and control of urban public infrastructure.Spatio-temporal informati...Urban public infrastructure is an important basis for urban development.It is of great significance to deepen the research on intelligent management and control of urban public infrastructure.Spatio-temporal information contains the law of state evolution of urban public infrastructure,which is the information base of intelligent control of infrastructure.Due to the needs of operation management and emergency response,efficient sharing and visualization of spatio-temporal information are important research contents of comprehensive management and control of urban public infrastructure.On the basis of summarizing the theoretical research and application in recent years,the basic methods and current situation of the acquisition and analysis of spatio-temporal information,the forecast and early warning,and the intelligent control of urban public infrastructure are reviewed in this paper.展开更多
On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and ...On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and so on.And it also expanded the data contents,such as the indoor and outdoor data,the overground and underground data,panoramic data and real data.It also introduced the contents of historical geographical information in different periods and real-time location information,address information of sensing equipment,real-time perception and interpreting information.It has overcome the difficulties of real-time access of Internet of Things(IoT)perception,multi-node collaboration,64-bit support,cluster deployment and has the characteristics of spatio-temporal management,ondemand service,large data analysis and micro-service architecture.It built spatio-temporal information big data center and spatio-temporal information cloud platform,realized the convergence and management of the distributed big data,deeply applied for land,transportation,environmental protection,police and subdistrict five areas,by supporting the integrated application of multi-source information and supporting intelligent deep application.In the aspect of hardware environment construction,according to the top-level design and unified arrangement of Smart Weifang,the WFCP was migrated to Weifang cloud computing center,to achieve the on-demand computing resources and dynamic scheduling load-based computing resources,to support the generalizing load map application.展开更多
Protecting and preserving our environmental systems require the ability to understand the spatio-temporal distri- bution of soils, parent material, topography, and land cover as well as the effects of human activities...Protecting and preserving our environmental systems require the ability to understand the spatio-temporal distri- bution of soils, parent material, topography, and land cover as well as the effects of human activities on ecosystems. Space-time modelling of ecosystems in an environmental digital library is essential for visualizing past, present, and future impacts of changes occurring within such landscapes (e.g., shift in land use practices). In this paper, we describe three novel features, spa- tio-temporal indexing, visualization, and geostatistical genre, for the environmental digital library, Environmental Visualization and Geographic Enterprise System (ENVISAGE), currently in progress at the University of Florida.展开更多
Based on the combination of Geographical information system(GIS)with the research ofToponymy,some foundational problems of the Geographical Name Information System(GINS)are discussed in this paper.The present situatio...Based on the combination of Geographical information system(GIS)with the research ofToponymy,some foundational problems of the Geographical Name Information System(GINS)are discussed in this paper.The present situation of Toponymical research is anal-ysed and the necessity of introducing the GIS tools to the research of Toponymy is demon-strated.The conceptual model of the GNIS and the structure of Geographical name Database(GND)are discussed.The basic functions of the GNIS software for management and re-search of geographical name are suggested.Some issues are stated such as the applicationand potential of the combination of GIS with CAD in the management and research of To-ponymy,the combination of GNIS with other spatial information system and sharing the in-formation with each other,the research and development of GNIS, etc.展开更多
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently...Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.展开更多
Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tan...Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models is compared by Akalke Information Criterion. The spatial clustering pattern is well characterized by the model which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and compared with the real seismicity.展开更多
Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes ...Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes and space-time epidemic processes. This paper seeks to suggest or propose Bayesian spatio-temporal model for modeling and mapping tuberculosis relative risks in space and time as well identify risks factors associated with the tuberculosis and counties in Kenya with high tuberculosis relative risks. In this paper, we used spatio-temporal Bayesian hierarchical models to study the pattern of tuberculosis relative risks in Kenya. The Markov Chain Monte Carlo method via WinBUGS and R packages were used for simulations and estimation of the parameter estimates. The best fitting model is selected using the Deviance Information Criterion proposed by Spiegelhalter and colleagues. Among the spatio-temporal models used, the Knorr-Held model with space-time interaction type III and IV fit the data well but type IV appears better than type III. Variation in tuberculosis risk is observed among Kenya counties and clustering among counties with high tuberculosis relative risks. The prevalence of HIV is identified as the determinant of TB. We found clustering and heterogeneity of TB risk among high rate counties and the overall tuberculosis risk is slightly decreasing from 2002-2009. We proposed that the Knorr-Held model with interaction type IV should be used to model and map Kenyan tuberculosis relative risks. Interaction of TB relative risk in space and time increases among rural counties that share boundaries with urban counties with high tuberculosis risk. This is due to the ability of models to borrow strength from neighboring counties, such that nearby counties have similar risk. Although the approaches are less than ideal, we hope that our study provide a useful stepping stone in the development of spatial and spatio-temporal methodology for the statistical analysis of risk from tuberculosis in Kenya.展开更多
Coronavirus disease 2019(COVID-19)is continuing to spread globally and still poses a great threat to human health.Since its outbreak,it has had catastrophic effects on human society.A visual method of analyzing COVID-...Coronavirus disease 2019(COVID-19)is continuing to spread globally and still poses a great threat to human health.Since its outbreak,it has had catastrophic effects on human society.A visual method of analyzing COVID-19 case information using spatio-temporal objects with multi-granularity is proposed based on the officially provided case information.This analysis reveals the spread of the epidemic,from the perspective of spatio-temporal objects,to provide references for related research and the formulation of epidemic prevention and control measures.The case information is abstracted,descripted,represented,and analyzed in the form of spatio-temporal objects through the construction of spatio-temporal case objects,multi-level visual expressions,and spatial correlation analysis.The rationality of the method is verified through visualization scenarios of case information statistics for China,Henan cases,and cases related to Shulan.The results show that the proposed method is helpful in the research and judgment of the development trend of the epidemic,the discovery of the transmission law,and the spatial traceability of the cases.It has a good portability and good expansion performance,so it can be used for the visual analysis of case information for other regions and can help users quickly discover the potential knowledge this information contains.展开更多
Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation.Existing researches usually us...Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation.Existing researches usually use convolutional neural networks to extract features directly from raw gesture data for gesture recognition,but the networks are affected by much interference information in the input data and thus fit to some unimportant features.In this paper,we proposed a novel method for encoding spatio-temporal information,which can enhance the key features required for gesture recognition,such as shape,structure,contour,position and hand motion of gestures,thereby improving the accuracy of gesture recognition.This encoding method can encode arbitrarily multiple frames of gesture data into a single frame of the spatio-temporal feature map and use the spatio-temporal feature map as the input to the neural network.This can guide the model to fit important features while avoiding the use of complex recurrent network structures to extract temporal features.In addition,we designed two sub-networks and trained the model using a sub-network pre-training strategy that trains the sub-networks first and then the entire network,so as to avoid the subnetworks focusing too much on the information of a single category feature and being overly influenced by each other’s features.Experimental results on two public gesture datasets show that the proposed spatio-temporal information encoding method achieves advanced accuracy.展开更多
An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-t...An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.展开更多
With long-term marine surveys and research,and especially with the development of new marine environment monitoring technologies,prodigious amounts of complex marine environmental data are generated,and continuously i...With long-term marine surveys and research,and especially with the development of new marine environment monitoring technologies,prodigious amounts of complex marine environmental data are generated,and continuously increase rapidly.Features of these data include massive volume,widespread distribution,multiple-sources,heterogeneous,multi-dimensional and dynamic in structure and time.The present study recommends an integrative visualization solution for these data,to enhance the visual display of data and data archives,and to develop a joint use of these data distributed among different organizations or communities.This study also analyses the web services technologies and defines the concept of the marine information gird,then focuses on the spatiotemporal visualization method and proposes a process-oriented spatiotemporal visualization method.We discuss how marine environmental data can be organized based on the spatiotemporal visualization method,and how organized data are represented for use with web services and stored in a reusable fashion.In addition,we provide an original visualization architecture that is integrative and based on the explored technologies.In the end,we propose a prototype system of marine environmental data of the South China Sea for visualizations of Argo floats,sea surface temperature fields,sea current fields,salinity,in-situ investigation data,and ocean stations.An integration visualization architecture is illustrated on the prototype system,which highlights the process-oriented temporal visualization method and demonstrates the benefit of the architecture and the methods described in this study.展开更多
Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combin...Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.展开更多
Virtual representation and simulation of spatio-temporal phenomena is a promising goal for the production of an advanced digital earth.Spread modeling,which is one of the most helpful analyses in the geographic inform...Virtual representation and simulation of spatio-temporal phenomena is a promising goal for the production of an advanced digital earth.Spread modeling,which is one of the most helpful analyses in the geographic information system(GIS),plays a prominent role in meeting this objective.This study proposes a new model that considers both aspects of static and dynamic behaviors of spreadable spatio-temporal in cellular automata(CA)modeling.Therefore,artificial intelligence tools such as adaptive neuro-fuzzy inference system(ANFIS)and genetic algorithm(GA)were used in accordance with the objectives of knowledge discovery and optimization.Significant conditions in updating states are considered so traditional CA transition rules can be accompanied with the impact of fuzzy discovered knowledge and the solution of spread optimization.We focused on the estimation of forest fire growth as an important case study for decision makers.A two-dimensional cellular representation of the combustion of heterogeneous fuel types and density on non-flat terrain were successfully linked with dynamic wind and slope impact.The validation of the simulation on experimental data indicated a relatively realistic head-fire shape.Further investigations showed that the results obtained using the dynamic controlling with GA in the absence of static modeling with ANFIS were unacceptable.展开更多
The relationship between the forming of fishing ground and the oceanic spatio-temporal field is nonlinear. In order to analyse the relationship between variables with spatio-temporal structures, a spatio-temporal patt...The relationship between the forming of fishing ground and the oceanic spatio-temporal field is nonlinear. In order to analyse the relationship between variables with spatio-temporal structures, a spatio-temporal pattern extracting model is provided to find the reason for the forming of fishing ground. In the model, the spatio-temporal structure of the oceanic factors is expressed as neighbour. The elements in the neighbour are filled in the table of decision-making system. After a recursion processing the spatio-temporal rule will be extracted with the spatio-temporal structure. And a experiment is given to show how to find the temperature pattern for the forming of the fishing grounds in Dasha area. It shows that the model is active and it should be the research front for the marine fishery.展开更多
We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers ex...We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability.展开更多
Based on the combination of Geographical information system(GIS)with the research of Toponymy,me foundational problems of the Geographical Name information System(GNIS)are discussed in this paper.The present situation...Based on the combination of Geographical information system(GIS)with the research of Toponymy,me foundational problems of the Geographical Name information System(GNIS)are discussed in this paper.The present situation of Toponymical research is analysed and the necessity of introducing the GIS tools to the research of Toponymy is demonstrated.THe conceptual model of the GNIS and the structure of Geographical name Database(GND)are discussed. The basic fucntions of the GNIS software for management and research of geographical name are suggested.Some issues are stated such as the application and potential of the combination of GNIS with other spatial informaion system and sharing the information with each other,the research and development of GNIS,etc.展开更多
文摘Cadastral Information System (CIS) is designed for the office automation of cadastral management. With the development of the market economics in China, cadastral management is facing many new problems. The most crucial one is the temporal problem in cadastral management. That is, CIS must consider both spatial data and temporal data. This paper reviews the situation of the current CIS and provides a method to manage the spatiotemporal data of CIS, and takes the CIS for Guangdong Province as an example to explain how to realize it in practice.
基金Jinqiao Project Seed Fund of Beijing Association for Science and Technology(No.ZZ19018)。
文摘Urban public infrastructure is an important basis for urban development.It is of great significance to deepen the research on intelligent management and control of urban public infrastructure.Spatio-temporal information contains the law of state evolution of urban public infrastructure,which is the information base of intelligent control of infrastructure.Due to the needs of operation management and emergency response,efficient sharing and visualization of spatio-temporal information are important research contents of comprehensive management and control of urban public infrastructure.On the basis of summarizing the theoretical research and application in recent years,the basic methods and current situation of the acquisition and analysis of spatio-temporal information,the forecast and early warning,and the intelligent control of urban public infrastructure are reviewed in this paper.
文摘On the basis of the digital Weifang geospatial framework,Smart Weifang spatio-temporal information cloud platform(WFCP)integrated legal person information,population,place name and address data,macroeconomic data and so on.And it also expanded the data contents,such as the indoor and outdoor data,the overground and underground data,panoramic data and real data.It also introduced the contents of historical geographical information in different periods and real-time location information,address information of sensing equipment,real-time perception and interpreting information.It has overcome the difficulties of real-time access of Internet of Things(IoT)perception,multi-node collaboration,64-bit support,cluster deployment and has the characteristics of spatio-temporal management,ondemand service,large data analysis and micro-service architecture.It built spatio-temporal information big data center and spatio-temporal information cloud platform,realized the convergence and management of the distributed big data,deeply applied for land,transportation,environmental protection,police and subdistrict five areas,by supporting the integrated application of multi-source information and supporting intelligent deep application.In the aspect of hardware environment construction,according to the top-level design and unified arrangement of Smart Weifang,the WFCP was migrated to Weifang cloud computing center,to achieve the on-demand computing resources and dynamic scheduling load-based computing resources,to support the generalizing load map application.
文摘Protecting and preserving our environmental systems require the ability to understand the spatio-temporal distri- bution of soils, parent material, topography, and land cover as well as the effects of human activities on ecosystems. Space-time modelling of ecosystems in an environmental digital library is essential for visualizing past, present, and future impacts of changes occurring within such landscapes (e.g., shift in land use practices). In this paper, we describe three novel features, spa- tio-temporal indexing, visualization, and geostatistical genre, for the environmental digital library, Environmental Visualization and Geographic Enterprise System (ENVISAGE), currently in progress at the University of Florida.
文摘Based on the combination of Geographical information system(GIS)with the research ofToponymy,some foundational problems of the Geographical Name Information System(GINS)are discussed in this paper.The present situation of Toponymical research is anal-ysed and the necessity of introducing the GIS tools to the research of Toponymy is demon-strated.The conceptual model of the GNIS and the structure of Geographical name Database(GND)are discussed.The basic functions of the GNIS software for management and re-search of geographical name are suggested.Some issues are stated such as the applicationand potential of the combination of GIS with CAD in the management and research of To-ponymy,the combination of GNIS with other spatial information system and sharing the in-formation with each other,the research and development of GNIS, etc.
基金supported by the National Key Basic Research and Development Program of China under contract No.2006CB701305the National Natural Science Foundation of China under coutract No.40571129the National High-Technology Program of China under contract Nos 2002AA639400,2003AA604040 and 2003AA637030.
文摘Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.
基金supported by National Natural Science of Foundation of China(No.10871026)
文摘Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models is compared by Akalke Information Criterion. The spatial clustering pattern is well characterized by the model which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and compared with the real seismicity.
文摘Proper understanding of global distribution of infectious diseases is an important part of disease management and policy making. However, data are subject to complexities caused by heterogeneities across host classes and space-time epidemic processes. This paper seeks to suggest or propose Bayesian spatio-temporal model for modeling and mapping tuberculosis relative risks in space and time as well identify risks factors associated with the tuberculosis and counties in Kenya with high tuberculosis relative risks. In this paper, we used spatio-temporal Bayesian hierarchical models to study the pattern of tuberculosis relative risks in Kenya. The Markov Chain Monte Carlo method via WinBUGS and R packages were used for simulations and estimation of the parameter estimates. The best fitting model is selected using the Deviance Information Criterion proposed by Spiegelhalter and colleagues. Among the spatio-temporal models used, the Knorr-Held model with space-time interaction type III and IV fit the data well but type IV appears better than type III. Variation in tuberculosis risk is observed among Kenya counties and clustering among counties with high tuberculosis relative risks. The prevalence of HIV is identified as the determinant of TB. We found clustering and heterogeneity of TB risk among high rate counties and the overall tuberculosis risk is slightly decreasing from 2002-2009. We proposed that the Knorr-Held model with interaction type IV should be used to model and map Kenyan tuberculosis relative risks. Interaction of TB relative risk in space and time increases among rural counties that share boundaries with urban counties with high tuberculosis risk. This is due to the ability of models to borrow strength from neighboring counties, such that nearby counties have similar risk. Although the approaches are less than ideal, we hope that our study provide a useful stepping stone in the development of spatial and spatio-temporal methodology for the statistical analysis of risk from tuberculosis in Kenya.
基金National Key Research and Development Program of China,No.2016YFB0502300。
文摘Coronavirus disease 2019(COVID-19)is continuing to spread globally and still poses a great threat to human health.Since its outbreak,it has had catastrophic effects on human society.A visual method of analyzing COVID-19 case information using spatio-temporal objects with multi-granularity is proposed based on the officially provided case information.This analysis reveals the spread of the epidemic,from the perspective of spatio-temporal objects,to provide references for related research and the formulation of epidemic prevention and control measures.The case information is abstracted,descripted,represented,and analyzed in the form of spatio-temporal objects through the construction of spatio-temporal case objects,multi-level visual expressions,and spatial correlation analysis.The rationality of the method is verified through visualization scenarios of case information statistics for China,Henan cases,and cases related to Shulan.The results show that the proposed method is helpful in the research and judgment of the development trend of the epidemic,the discovery of the transmission law,and the spatial traceability of the cases.It has a good portability and good expansion performance,so it can be used for the visual analysis of case information for other regions and can help users quickly discover the potential knowledge this information contains.
基金This work was supported,in part,by the National Nature Science Foundation of China under grant numbers 62272236in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation.Existing researches usually use convolutional neural networks to extract features directly from raw gesture data for gesture recognition,but the networks are affected by much interference information in the input data and thus fit to some unimportant features.In this paper,we proposed a novel method for encoding spatio-temporal information,which can enhance the key features required for gesture recognition,such as shape,structure,contour,position and hand motion of gestures,thereby improving the accuracy of gesture recognition.This encoding method can encode arbitrarily multiple frames of gesture data into a single frame of the spatio-temporal feature map and use the spatio-temporal feature map as the input to the neural network.This can guide the model to fit important features while avoiding the use of complex recurrent network structures to extract temporal features.In addition,we designed two sub-networks and trained the model using a sub-network pre-training strategy that trains the sub-networks first and then the entire network,so as to avoid the subnetworks focusing too much on the information of a single category feature and being overly influenced by each other’s features.Experimental results on two public gesture datasets show that the proposed spatio-temporal information encoding method achieves advanced accuracy.
基金The National Natural Science Foundation of China(No. 60972001 )the Science and Technology Plan of Suzhou City(No. SG201076)
文摘An adaptive human tracking method across spatially separated surveillance cameras with non-overlapping fields of views (FOVs) is proposed. The method relies on the two cues of the human appearance model and spatio-temporal information between cameras. For the human appearance model, an HSV color histogram is extracted from different human body parts (head, torso, and legs), then a weighted algorithm is used to compute the similarity distance of two people. Finally, a similarity sorting algorithm with two thresholds is exploited to find the correspondence. The spatio- temporal information is established in the learning phase and is updated incrementally according to the latest correspondence. The experimental results prove that the proposed human tracking method is effective without requiring camera calibration and it becomes more accurate over time as new observations are accumulated.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-04)the National High Technology Research and Development Program of China (863 Program) (Nos.2009AA12Z148,2007AA092202)Support for this study was provided by the Institute of Geographical Sciences and the Natural Resources Research,Chinese Academy of Science (IGSNRR,CAS) and the Institute of Oceanology, CAS
文摘With long-term marine surveys and research,and especially with the development of new marine environment monitoring technologies,prodigious amounts of complex marine environmental data are generated,and continuously increase rapidly.Features of these data include massive volume,widespread distribution,multiple-sources,heterogeneous,multi-dimensional and dynamic in structure and time.The present study recommends an integrative visualization solution for these data,to enhance the visual display of data and data archives,and to develop a joint use of these data distributed among different organizations or communities.This study also analyses the web services technologies and defines the concept of the marine information gird,then focuses on the spatiotemporal visualization method and proposes a process-oriented spatiotemporal visualization method.We discuss how marine environmental data can be organized based on the spatiotemporal visualization method,and how organized data are represented for use with web services and stored in a reusable fashion.In addition,we provide an original visualization architecture that is integrative and based on the explored technologies.In the end,we propose a prototype system of marine environmental data of the South China Sea for visualizations of Argo floats,sea surface temperature fields,sea current fields,salinity,in-situ investigation data,and ocean stations.An integration visualization architecture is illustrated on the prototype system,which highlights the process-oriented temporal visualization method and demonstrates the benefit of the architecture and the methods described in this study.
基金supported by National Natural Science Foundation of China(No.61103123)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Most of the exist action recognition methods mainly utilize spatio-temporal descriptors of single interest point while ignoring their potential integral information, such as spatial distribution information. By combining local spatio-temporal feature and global positional distribution information(PDI) of interest points, a novel motion descriptor is proposed in this paper. The proposed method detects interest points by using an improved interest point detection method. Then, 3-dimensional scale-invariant feature transform(3D SIFT) descriptors are extracted for every interest point. In order to obtain a compact description and efficient computation, the principal component analysis(PCA) method is utilized twice on the 3D SIFT descriptors of single frame and multiple frames. Simultaneously, the PDI of the interest points are computed and combined with the above features. The combined features are quantified and selected and finally tested by using the support vector machine(SVM) recognition algorithm on the public KTH dataset. The testing results have showed that the recognition rate has been significantly improved and the proposed features can more accurately describe human motion with high adaptability to scenarios.
文摘Virtual representation and simulation of spatio-temporal phenomena is a promising goal for the production of an advanced digital earth.Spread modeling,which is one of the most helpful analyses in the geographic information system(GIS),plays a prominent role in meeting this objective.This study proposes a new model that considers both aspects of static and dynamic behaviors of spreadable spatio-temporal in cellular automata(CA)modeling.Therefore,artificial intelligence tools such as adaptive neuro-fuzzy inference system(ANFIS)and genetic algorithm(GA)were used in accordance with the objectives of knowledge discovery and optimization.Significant conditions in updating states are considered so traditional CA transition rules can be accompanied with the impact of fuzzy discovered knowledge and the solution of spread optimization.We focused on the estimation of forest fire growth as an important case study for decision makers.A two-dimensional cellular representation of the combustion of heterogeneous fuel types and density on non-flat terrain were successfully linked with dynamic wind and slope impact.The validation of the simulation on experimental data indicated a relatively realistic head-fire shape.Further investigations showed that the results obtained using the dynamic controlling with GA in the absence of static modeling with ANFIS were unacceptable.
文摘The relationship between the forming of fishing ground and the oceanic spatio-temporal field is nonlinear. In order to analyse the relationship between variables with spatio-temporal structures, a spatio-temporal pattern extracting model is provided to find the reason for the forming of fishing ground. In the model, the spatio-temporal structure of the oceanic factors is expressed as neighbour. The elements in the neighbour are filled in the table of decision-making system. After a recursion processing the spatio-temporal rule will be extracted with the spatio-temporal structure. And a experiment is given to show how to find the temperature pattern for the forming of the fishing grounds in Dasha area. It shows that the model is active and it should be the research front for the marine fishery.
基金This work was supported by the National Key Research and Development Program of China under Grant 2018YFF0214704.
文摘We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability.
文摘Based on the combination of Geographical information system(GIS)with the research of Toponymy,me foundational problems of the Geographical Name information System(GNIS)are discussed in this paper.The present situation of Toponymical research is analysed and the necessity of introducing the GIS tools to the research of Toponymy is demonstrated.THe conceptual model of the GNIS and the structure of Geographical name Database(GND)are discussed. The basic fucntions of the GNIS software for management and research of geographical name are suggested.Some issues are stated such as the application and potential of the combination of GNIS with other spatial informaion system and sharing the information with each other,the research and development of GNIS,etc.