It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical fra...It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.展开更多
Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to ver...Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.展开更多
The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns relat...The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.展开更多
The phase transition of gallium phosphide (GAP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elasti...The phase transition of gallium phosphide (GAP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0 are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/Vo, the Debye temperature 8, the heat capacity Cv and the thermal expansion coefficient a are also discussed in a pressure range from 0 CPa to 40 GPa and a temperature range from 0 K to 1500 K.展开更多
Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous ...Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous phenomena of scaling and universality,whether the former behaves similarly is a long-standing controversial issue.Here we definitely demonstrate complete universal scaling in field driven FOPTs for Langevin equations in both zero and two spatial dimensions by rescaling all parameters and subtracting nonuniversal contributions with singular dimensions from an effective temperature and a special field according to an effective theory.This offers a perspective different from the usual nucleation and growth but conforming to continuous phase transitions to study FOPTs.展开更多
Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TM...Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.展开更多
Collective behaviours of active particle systems have gained great research attentions in re- cent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of a...Collective behaviours of active particle systems have gained great research attentions in re- cent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of active and passive Brownian particles. The starting point is an eff)ctive Smoluchowski equation, which governs the dynamics of the probability dis- tribution function in the position phase space. With the assumption of the existence of a nonequilibrium steady state, we are able to obtain dynamic equations for the intermediate scattering functions (ISFs), wherein an irreducible memory function is introduced which in turn can be written as functions of the ISFs based on standard mode-coupling approximations. The effect of particle activity is included through an effective difIusion coefficient which can be obtained via short time simulations. By calculating the long-time limit of the ISF, the Debye-Waller (DW) factor, one can determine the critical packing fraction ηc of glass transition. We find that for active-passive (AP) mixtures with the same particle sizes, ηc increases as the partial fraction of active particle xA increases, which is in agreement with previous simulation works. For system with different active/passive particle sizes, we find an interesting reentrance behaviour of glass transition, i.e., ηc shows a non-monotonic dependence on xa. In addition, such a reentrance behaviour would disappear if the particle activity is large enough. Our results thus provide a useful theoretical scheme to study glass transition behaviour of active-passive mixture systems in a promising way.展开更多
Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis tha...Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.展开更多
The kinetics of nucleation of phase transition is a phenomenal theory.Some new technologies of preparation of nanomaterials,for example,by shock wave and by electropulsing,are pulse interactions.Based on the known non...The kinetics of nucleation of phase transition is a phenomenal theory.Some new technologies of preparation of nanomaterials,for example,by shock wave and by electropulsing,are pulse interactions.Based on the known nonlinear theories of phase transition,the nonlinear kinetics of phase transition is discussed,and a soliton-like model is proposed. This mathematical method can not only explain the basic characteristics of pulse interactions and suddenness of phase transition, and possesses a consistency of mechanism for nucleation and growth.展开更多
This paper reviews the development of Meleis transition theory,explores the trajectory of the development of transition theory,analyses of the transition theory at home and abroad and research status,discusses the res...This paper reviews the development of Meleis transition theory,explores the trajectory of the development of transition theory,analyses of the transition theory at home and abroad and research status,discusses the research prospect of transition theory,in order to better apply Meleis transition theory to clinical nursing work,provide a certain basis for discipline development and nursing research.展开更多
The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has...The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.展开更多
We reconsider the Mott transition in the context of a two-dimensional fermion model with density-density coupling. We exhibit a Hilbert space mapping between the original model and the Double Lattice Chern-Simons theo...We reconsider the Mott transition in the context of a two-dimensional fermion model with density-density coupling. We exhibit a Hilbert space mapping between the original model and the Double Lattice Chern-Simons theory at the critical point by use of the representation theory of the q-oscillator and Weyl algebras. The transition is further characterized by the ground state modification. The explicit mapping provides a new tool to further probe and test the detailed physical properties of the fermionic lattice model considered here and to enhance our understanding of the Mott transition(s).展开更多
Purpose: To explore the effect of comprehensive intervention based on transition theory in enhancing the readiness for discharge of post-operative breast cancer patients. Method: In a non-simultaneous controlled study...Purpose: To explore the effect of comprehensive intervention based on transition theory in enhancing the readiness for discharge of post-operative breast cancer patients. Method: In a non-simultaneous controlled study test, 99 post-operative breast cancer patients hospitalized between August 2019 and February 2020 were selected as the control group and 93 post-operative breast cancer patients hospitalized between March and August 2020 were selected as the test group at a Grade A tertiary tumor hospital. While the control group used the conventional care model, the test group added a comprehensive intervention based on transition theory to the routine nursing, which focused on stimulating patients’ awareness of health transitions, assisting patients to identify health critical events, strengthening social support and promoting self-management. The differences between the two groups were compared in terms of patient readiness for discharge and patient evaluation of the quality of discharge teaching. Result: The total score of readiness for discharge was higher in the test group than in the control group (171.7 ± 24.5 vs. 155.9 ± 28.9) and the scores for “Self-condition” (55.6 ± 8.2 vs. 50.8 ± 9.7), “Disease Knowledge” (64.7 ± 13.1 vs. 57.7 ± 13.8), “Coping Ability after Discharge” (24.6 ± 4.8 vs. 22.2 ± 5.6), “Expected Social Support after Discharge” (26.8 ± 4.5 vs. 25.2 ± 4.8) were higher than those of the control group, and all differences were statistically significant (p < 0.05). The total score of the test group on the quality of discharge teaching scale was higher than that of the control group (162.1 ± 19.9 vs. 152.6 ± 28.7), and the scores for “Content that Patients Self-perceived they required before discharge” (53.2 ± 9.5 vs. 49.4 ± 12.1), “Content that Patients Actually Acquired before Discharge” (51.2 ± 9.2 vs. 48.3 ± 11.3) and “Guiding Skills and Effects of Discharge for Nurses” (110.9 ± 12.6 vs. 104.3 ± 19.00) were also higher than those of the control group (p Conclusion: Comprehensive intervention based on transition theory for post-operative breast cancer patients is beneficial to improve the quality of discharge nursing guidance, thereby improving the readiness for discharge of patients and enhancing the sense of control and identity of patients after discharge.展开更多
The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is inv...The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is investigated numerically in this paper.Based on quasi-steady assumption,the linear parameter varying (LPV) model of the morphing vehicle is derived from its nonlinear equation.Afterwards,by solving a set of linear matrix inequalities along with the bound of the morphing rate via slowly varying system theory,the designed controller which considers the transition stability during the morphing process is obtained.Finally,the transition process simulations of the morphing aircraft are performed via the changes simultaneously in both span and sweep,and the results demonstrate the effectiveness of the proposed controller.展开更多
The Weakest Bound Electron Potential Model theory is used to calculate transition probability-values and oscillator strength-values for individual lines of Sc(Ⅲ) and Y(Ⅲ). In this method, by solving the SchrSdin...The Weakest Bound Electron Potential Model theory is used to calculate transition probability-values and oscillator strength-values for individual lines of Sc(Ⅲ) and Y(Ⅲ). In this method, by solving the SchrSdinger equation of the weakest bound electron, the expressions of energy eigenvalue and the radial function can be obtained. And a coupled equation is used to determine the parameters which are needed in the calculations. The ob- tained results of Sc(III) from this work agree very well with the accepted values taken from the National Institute of Standards and Technoligy (NIST) data base, most deviations are within the accepted level. For Y(Ⅲ) there are no accepted values reported by the NIST data base. So we compared our results of Y(Ⅲ) with other theoretical results, good agreement is also obtained.展开更多
In this paper the first-principles calculations within local spin density approximation (LSDA)+U show that BiFeO3 experiences a mixed phase state with P4mm structure being the intermediate phase before the pressure...In this paper the first-principles calculations within local spin density approximation (LSDA)+U show that BiFeO3 experiences a mixed phase state with P4mm structure being the intermediate phase before the pressure of phase transition is reached. The critical pressure for the insulator-metal transition (IMT) is found to be about 50 GPa. A pressure induced crossover of high-spin states and low-spin states is observed close to the IMT pressure in R3c structure. The LSDA+U calculations account well for the mechanism of the IMT and crossover of spin states predicted in recent experiment (Ref.[1]).展开更多
We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard m...We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.展开更多
Theoretical studies on the rearrangement reactions of nitropyrazoles have beeninvestigated. In order to gain a better understanding of the intermediate process of rearrangementreactions, the transition states of the r...Theoretical studies on the rearrangement reactions of nitropyrazoles have beeninvestigated. In order to gain a better understanding of the intermediate process of rearrangementreactions, the transition states of the rearrangement reactions were obtained by TS method at theB3LYP/6-311G(d, p) level of theory. The natural bond orbital charge, electrostatic potential andfrontier molecular orbital of the molecules in the process of rearrangement were analyzed, and thesolvent effect was also discussed. The rearrangement of nitropyrazoles involves two transitionstates and one intermediate, and the nitro group and hydrogen atom are two transfer groups forrearrangement reactions. The migration of these two groups leads to the change of chargedistribution and molecular structure. The structural changes of the molecules in different solventsare not significant, but the dipole moment of the molecule has obvious change.展开更多
In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;...In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>č</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span>展开更多
基金Under the auspices of the Taishan Scholars Project Special FundsNational Natural Science Fundation of China(No.42077434,42001199)Youth Innovation Technology Project of Higher School in Shandong Province(No.2019RWG016)。
文摘It is an important way to realize rural revitalization and sustainable development to guide rural settlement transition(RST)in an appropriate way.This paper uses actor network theory(ANT)to construct a theoretical framework for the study of RST.Taking two typical villages with different transition paths in rural areas of North China Plain as examples,this paper reveals the mechanism of RST and makes a comparative analysis.The results show that:1)after identifying problems and obligatory passage point,key actors recruit heterogeneous actors into the actor network by entrusting them with common interests,and realize RST under the system operation.2)Rural settlements under different transition paths have similarities in the problems to be solved,collective actions and policy factors,but there are differences in the transition process,mechanism and effect.The actor network and mechanism of RST through the path of new rural community construction are more complex and the transition effect is more thorough.In contrast,the degree of RST of retention development path is limited if there is no resource and location advantage.3)Based on the applicable conditions of different paths,this paper designs a logical framework of‘Situation-Structure-Behavior-Result’to scientifically guide the identification of RST paths under the background of rural revitalization.
基金Project supported by the Open Project of the Key Laboratory of Xinjiang Uygur Autonomous Region,China(Grant No.2021D04015)the Yili Kazakh Autonomous Prefecture Science and Technology Program Project,China(Grant No.YZ2022B021).
文摘Fractional molecular field theory(FMFT)is a phenomenological theory that describes phase transitions in crystals with randomly distributed components,such as the relaxor-ferroelectrics and spin glasses.In order to verify the feasibility of this theory,this paper fits it to the Monte Carlo simulations of specific heat and susceptibility versus temperature of two-dimensional(2D)random-site Ising model(2D-RSIM).The results indicate that the FMFT deviates from the 2D-RSIM significantly.The main reason for the deviation is that the 2D-RSIM is a typical system of component random distribution,where the real order parameter is spatially heterogeneous and has no symmetry of space translation,but the basic assumption of FMFT means that the parameter is spatially uniform and has symmetry of space translation.
基金University of the Witwatersrand Additional funding is from the DSI-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘The pursuit of improved quality of life standards has significantly influenced the contemporary mining model in the 21st century.This era is witnessing an unprecedented transformation driven by pressing concerns related to sustainability,climate change,the just energy transition,dynamic operating environments,and complex social challenges.Such transitions present both opportunities and obstacles.The aim of this study is to provide an extensive literature review on energy transition to identify the challenges and strategies associated with navigating transformations in energy systems.Understanding these transformations is particularly critical in the face of the severe consequences of global warming,where an accelerated energy transition is viewed as a universal remedy.Adopting a socio-technological systems perspective,specifically through the application of Actor Network Theory(ANT),this research provides a theoretical foundation while categorising challenges into five distinct domains and outlining strategies across these different dimensions.These insights are specifically tailored for emerging market countries to effectively navigate energy transition while fostering the development of resilient societies.Furthermore,our findings highlight that energy transition encompasses more than a mere technological shift;it entails fundamental changes in various systemic socio-economic imperatives.Through focusing on the role of social structures in transitions,this study makes a significant and innovative contribution to ANT,which has historically been criticised for its limited acknowledgement of social structures.Consequently,we propose an emerging market energy transition framework,which not only addresses technological aspects,but also integrates social considerations.This framework paves the way for future research and exploration of energy transition dynamics.The outcomes of this study offer valuable insights to policymakers,researchers,and practitioners engaged in the mining industry,enabling them to comprehend the multifaceted challenges involved and providing practical strategies for effective resolution.Through incorporating the social dimension into the analysis,we enhance the understanding of the complex nature of energy system transformations,facilitating a more holistic approach towards achieving sustainable and resilient energy transitions in emerging markets and beyond.
文摘The phase transition of gallium phosphide (GAP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0 are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/Vo, the Debye temperature 8, the heat capacity Cv and the thermal expansion coefficient a are also discussed in a pressure range from 0 CPa to 40 GPa and a temperature range from 0 K to 1500 K.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions and critical phenomena are among the most intriguing phenomena in nature and society.They are classified into first-order phase transitions(FOPTs)and continuous ones.While the latter shows marvelous phenomena of scaling and universality,whether the former behaves similarly is a long-standing controversial issue.Here we definitely demonstrate complete universal scaling in field driven FOPTs for Langevin equations in both zero and two spatial dimensions by rescaling all parameters and subtracting nonuniversal contributions with singular dimensions from an effective temperature and a special field according to an effective theory.This offers a perspective different from the usual nucleation and growth but conforming to continuous phase transitions to study FOPTs.
基金Science and Technology Commission of Shanghai Municipality(21ZR1472900,22ZR1471600)。
文摘Platinum(Pt)-based noble metal catalysts(PGMs)are the most widely used commercial catalysts,but they have the problems of high cost,low reserves,and susceptibility to small-molecule toxicity.Transition metal oxides(TMOs)are regarded as potential substitutes for PGMs because of their stability in oxidizing environments and excellent catalytic performance.In this study,comprehensive investigation into the influence of elastic strains on the adsorption energies of carbon(C),hydrogen(H)and oxygen(O)on TMOs was conducted.Based on density functional theory(DFT)calculations,these effects in both tetragonal structures(PtO_(2),PdO_(2))and hexagonal structures(ZnO,CdO),along with their respective transition metals were systematically explored.It was identified that the optimal adsorption sites on metal oxides pinpointed the top of oxygen or the top of metal atom,while face-centered cubic(FCC)and hexagonal close-packed(HCP)holes were preferred for the transition metals.Furthermore,under the influence of elastic strains,the results demonstrated significant disparities in the adsorption energies of H and O between oxides and transition metals.Despite these differences,the effect of elastic strains on the adsorption energies of C,H and O on TMOs mirrored those on transition metals:adsorption energies increased under compressive strains,indicating weaker adsorption,and decreased under tension strains,indicating stronger adsorption.This behavior was rationalized based on the d-band model for adsorption atop a metallic atom or the p-band model for adsorption atop an oxygen atom.Consequently,elastic strains present a promising avenue for tailoring the catalytic properties of TMOs.
基金supported by the Ministry of Science and Technology of China(No.2016YFA0400904and No.2013CB834606)the National Natural Science Foundation of China(No.21673212,No.21521001,No.21473165,No.21403204)the Fundamental Research Funds for the Central Universities(No.WK2030020028 and No.2340000074)
文摘Collective behaviours of active particle systems have gained great research attentions in re- cent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of active and passive Brownian particles. The starting point is an eff)ctive Smoluchowski equation, which governs the dynamics of the probability dis- tribution function in the position phase space. With the assumption of the existence of a nonequilibrium steady state, we are able to obtain dynamic equations for the intermediate scattering functions (ISFs), wherein an irreducible memory function is introduced which in turn can be written as functions of the ISFs based on standard mode-coupling approximations. The effect of particle activity is included through an effective difIusion coefficient which can be obtained via short time simulations. By calculating the long-time limit of the ISF, the Debye-Waller (DW) factor, one can determine the critical packing fraction ηc of glass transition. We find that for active-passive (AP) mixtures with the same particle sizes, ηc increases as the partial fraction of active particle xA increases, which is in agreement with previous simulation works. For system with different active/passive particle sizes, we find an interesting reentrance behaviour of glass transition, i.e., ηc shows a non-monotonic dependence on xa. In addition, such a reentrance behaviour would disappear if the particle activity is large enough. Our results thus provide a useful theoretical scheme to study glass transition behaviour of active-passive mixture systems in a promising way.
文摘Recent discoveries have revealed a groundbreaking phenomenon where light alone, without any thermal input, can induce water evaporation, termed the “photomolecular effect”. This study explores a novel hypothesis that this effect can be explained by ortho-para magnetic spin interactions in water molecules within the water-air interface layer. Water molecules, consisting of hydrogen and oxygen, exhibit different nuclear spin states: ortho-(triplet) and para-(singlet). The interaction of polarized light with these spin states may induce transitions between the rotational levels of ortho- and para-forms due to catalysts like triplet oxygen (O2) in its inhomogeneous magnetic field. Resonance pumping at 532 nm (~18,797 cm−1) due to the transition v1-v2-v3 ~ 0-8-2 (~18,796 cm−1) results in an increase in molecular energy sufficient to overcome intermolecular forces at the water surface, thereby causing evaporation. The proposed ortho-para conversion mechanism involves spin-orbit coupling and specific resonance conditions. This theory provides a quantum mechanical perspective on the photomolecular effect, potentially offering insights into natural processes such as cloud formation and climate modeling, as well as practical applications in solar desalination and industrial drying. Further experimental validation is required to confirm the role of spin interactions in light-induced water evaporation.
文摘The kinetics of nucleation of phase transition is a phenomenal theory.Some new technologies of preparation of nanomaterials,for example,by shock wave and by electropulsing,are pulse interactions.Based on the known nonlinear theories of phase transition,the nonlinear kinetics of phase transition is discussed,and a soliton-like model is proposed. This mathematical method can not only explain the basic characteristics of pulse interactions and suddenness of phase transition, and possesses a consistency of mechanism for nucleation and growth.
文摘This paper reviews the development of Meleis transition theory,explores the trajectory of the development of transition theory,analyses of the transition theory at home and abroad and research status,discusses the research prospect of transition theory,in order to better apply Meleis transition theory to clinical nursing work,provide a certain basis for discipline development and nursing research.
基金the National Natural Science Foundation of China (20673019, 20773024)the Natural Science Foundation of Fujian Province (U0650012)the New Century Excellent Talents in University and the Initial Funding for Talents of Fuzhou University (2008-XQ-07, XRC-0732)
文摘The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.
文摘We reconsider the Mott transition in the context of a two-dimensional fermion model with density-density coupling. We exhibit a Hilbert space mapping between the original model and the Double Lattice Chern-Simons theory at the critical point by use of the representation theory of the q-oscillator and Weyl algebras. The transition is further characterized by the ground state modification. The explicit mapping provides a new tool to further probe and test the detailed physical properties of the fermionic lattice model considered here and to enhance our understanding of the Mott transition(s).
文摘Purpose: To explore the effect of comprehensive intervention based on transition theory in enhancing the readiness for discharge of post-operative breast cancer patients. Method: In a non-simultaneous controlled study test, 99 post-operative breast cancer patients hospitalized between August 2019 and February 2020 were selected as the control group and 93 post-operative breast cancer patients hospitalized between March and August 2020 were selected as the test group at a Grade A tertiary tumor hospital. While the control group used the conventional care model, the test group added a comprehensive intervention based on transition theory to the routine nursing, which focused on stimulating patients’ awareness of health transitions, assisting patients to identify health critical events, strengthening social support and promoting self-management. The differences between the two groups were compared in terms of patient readiness for discharge and patient evaluation of the quality of discharge teaching. Result: The total score of readiness for discharge was higher in the test group than in the control group (171.7 ± 24.5 vs. 155.9 ± 28.9) and the scores for “Self-condition” (55.6 ± 8.2 vs. 50.8 ± 9.7), “Disease Knowledge” (64.7 ± 13.1 vs. 57.7 ± 13.8), “Coping Ability after Discharge” (24.6 ± 4.8 vs. 22.2 ± 5.6), “Expected Social Support after Discharge” (26.8 ± 4.5 vs. 25.2 ± 4.8) were higher than those of the control group, and all differences were statistically significant (p < 0.05). The total score of the test group on the quality of discharge teaching scale was higher than that of the control group (162.1 ± 19.9 vs. 152.6 ± 28.7), and the scores for “Content that Patients Self-perceived they required before discharge” (53.2 ± 9.5 vs. 49.4 ± 12.1), “Content that Patients Actually Acquired before Discharge” (51.2 ± 9.2 vs. 48.3 ± 11.3) and “Guiding Skills and Effects of Discharge for Nurses” (110.9 ± 12.6 vs. 104.3 ± 19.00) were also higher than those of the control group (p Conclusion: Comprehensive intervention based on transition theory for post-operative breast cancer patients is beneficial to improve the quality of discharge nursing guidance, thereby improving the readiness for discharge of patients and enhancing the sense of control and identity of patients after discharge.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2662018QD029)the National Natural Science Foundation of China(Nos.91016022,61503354)in part by the Priority Academic Program of Jiangsu Higher Education Institutions
文摘The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is investigated numerically in this paper.Based on quasi-steady assumption,the linear parameter varying (LPV) model of the morphing vehicle is derived from its nonlinear equation.Afterwards,by solving a set of linear matrix inequalities along with the bound of the morphing rate via slowly varying system theory,the designed controller which considers the transition stability during the morphing process is obtained.Finally,the transition process simulations of the morphing aircraft are performed via the changes simultaneously in both span and sweep,and the results demonstrate the effectiveness of the proposed controller.
文摘The Weakest Bound Electron Potential Model theory is used to calculate transition probability-values and oscillator strength-values for individual lines of Sc(Ⅲ) and Y(Ⅲ). In this method, by solving the SchrSdinger equation of the weakest bound electron, the expressions of energy eigenvalue and the radial function can be obtained. And a coupled equation is used to determine the parameters which are needed in the calculations. The ob- tained results of Sc(III) from this work agree very well with the accepted values taken from the National Institute of Standards and Technoligy (NIST) data base, most deviations are within the accepted level. For Y(Ⅲ) there are no accepted values reported by the NIST data base. So we compared our results of Y(Ⅲ) with other theoretical results, good agreement is also obtained.
文摘In this paper the first-principles calculations within local spin density approximation (LSDA)+U show that BiFeO3 experiences a mixed phase state with P4mm structure being the intermediate phase before the pressure of phase transition is reached. The critical pressure for the insulator-metal transition (IMT) is found to be about 50 GPa. A pressure induced crossover of high-spin states and low-spin states is observed close to the IMT pressure in R3c structure. The LSDA+U calculations account well for the mechanism of the IMT and crossover of spin states predicted in recent experiment (Ref.[1]).
基金supported by the National Natural Science Foundation of China(Grant Nos.11174169,11234007,and 51471093)
文摘We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.
文摘Theoretical studies on the rearrangement reactions of nitropyrazoles have beeninvestigated. In order to gain a better understanding of the intermediate process of rearrangementreactions, the transition states of the rearrangement reactions were obtained by TS method at theB3LYP/6-311G(d, p) level of theory. The natural bond orbital charge, electrostatic potential andfrontier molecular orbital of the molecules in the process of rearrangement were analyzed, and thesolvent effect was also discussed. The rearrangement of nitropyrazoles involves two transitionstates and one intermediate, and the nitro group and hydrogen atom are two transfer groups forrearrangement reactions. The migration of these two groups leads to the change of chargedistribution and molecular structure. The structural changes of the molecules in different solventsare not significant, but the dipole moment of the molecule has obvious change.
文摘In this contribution results from different disciplines of science were compared to show their intimate interweaving with each other having in common the golden ratio <i><span style="font-family:Verdana;">φ</span></i><span style="font-family:Verdana;"> respectively its fifth power </span><i><span style="font-family:Verdana;">φ</span></i><sup><span style="font-family:Verdana;">5</span></sup><span style="font-family:Verdana;">. The research fields cover model calculations of statistical physics associated with phase transitions, the quantum probability of two particles, new physics of everything suggested by the information relativity theory (</span><i><span style="font-family:Verdana;">IRT</span></i><span style="font-family:Verdana;">) including explanations of cosmological relevance, the </span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">infinity theory, superconductivity, and the </span><i><span style="font-family:Verdana;">Tammes</span></i><span style="font-family:Verdana;"> problem of the largest diameter of </span><i><span style="font-family:Verdana;">N</span></i><span style="font-family:Verdana;"> non-overlapping circles on the surface of a sphere with its connection to viral morphology and crystallography. Finally, </span><i><span style="font-family:Verdana;">Fibo</span><span style="font-family:Verdana;">nacci</span></i><span style="font-family:Verdana;"> anyons proposed for topological quantum</span><span style="font-family:Verdana;"> computation (</span><i><span style="font-family:Verdana;">TQC</span></i><span style="font-family:Verdana;">) were briefly described in comparison to the recently formulated reverse </span><i><span style="font-family:Verdana;">Fibonacci</span></i><span style="font-family:Verdana;"> approach using the </span><span style="font-family:Verdana;"><em>Jani</em></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="white-space:nowrap;"><em>č</em></span><em>ko</em></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> number sequence. An architecture applicable for a quantum computer is proposed consisting of 13-step twisted microtubules similar to tubulin microtubules of living matter. Most topics point to the omnipresence of the golden mean as the numerical dominator of our world.</span></span></span>