期刊文献+
共找到52,382篇文章
< 1 2 250 >
每页显示 20 50 100
Orientation and Decision-Making for Soccer Based on Sports Analytics and AI:A Systematic Review
1
作者 Zhiqiang Pu Yi Pan +4 位作者 Shijie Wang Boyin Liu Min Chen Hao Ma Yixiong Cui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期37-57,共21页
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio... Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making. 展开更多
关键词 Artificial intelligence(AI) DECISION-MAKING FOOTBALL review SOCCER sports analytics
下载PDF
A Weighted Multi-Layer Analytics Based Model for Emoji Recommendation
2
作者 Amira M.Idrees Abdul Lateef Marzouq Al-Solami 《Computers, Materials & Continua》 SCIE EI 2024年第1期1115-1133,共19页
The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for ind... The developed system for eye and face detection using Convolutional Neural Networks(CNN)models,followed by eye classification and voice-based assistance,has shown promising potential in enhancing accessibility for individuals with visual impairments.The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system.This research significantly contributes to the field of accessibility technology by integrating computer vision,natural language processing,and voice technologies.By leveraging these advancements,the developed system offers a practical and efficient solution for assisting blind individuals.The modular design ensures flexibility,scalability,and ease of integration with existing assistive technologies.However,it is important to acknowledge that further research and improvements are necessary to enhance the system’s accuracy and usability.Fine-tuning the CNN models and expanding the training dataset can improve eye and face detection as well as eye classification capabilities.Additionally,incorporating real-time responses through sophisticated natural language understanding techniques and expanding the knowledge base of ChatGPT can enhance the system’s ability to provide comprehensive and accurate responses.Overall,this research paves the way for the development of more advanced and robust systems for assisting visually impaired individuals.By leveraging cutting-edge technologies and integrating them into amodular framework,this research contributes to creating a more inclusive and accessible society for individuals with visual impairments.Future work can focus on refining the system,addressing its limitations,and conducting user studies to evaluate its effectiveness and impact in real-world scenarios. 展开更多
关键词 Social networks text analytics emoji prediction features extraction information retrieval
下载PDF
Game Theory Based Model for Predictive Analytics Using Distributed Position Function
3
作者 Mirhossein Mousavi Karimi Shahram Rahimi 《International Journal of Intelligence Science》 2024年第1期22-47,共26页
This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are d... This paper presents a game theory-based method for predicting the outcomes of negotiation and group decision-making problems. We propose an extension to the BDM model to address problems where actors’ positions are distributed over a position spectrum. We generalize the concept of position in the model to incorporate continuous positions for the actors, enabling them to have more flexibility in defining their targets. We explore different possible functions to study the role of the position function and discuss appropriate distance measures for computing the distance between the positions of actors. To validate the proposed extension, we demonstrate the trustworthiness of our model’s performance and interpretation by replicating the results based on data used in earlier studies. 展开更多
关键词 Distributed Position Function Game Theory Group Decision Making Predictive analytics
下载PDF
Evaluation of a software positioning tool to support SMEs in adoption of big data analytics
4
作者 Matthew Willetts Anthony S.Atkins 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第1期13-24,共12页
Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Sma... Big data analytics has been widely adopted by large companies to achieve measurable benefits including increased profitability,customer demand forecasting,cheaper development of products,and improved stock control.Small and medium sized enterprises(SMEs)are the backbone of the global economy,comprising of 90%of businesses worldwide.However,only 10%SMEs have adopted big data analytics despite the competitive advantage they could achieve.Previous research has analysed the barriers to adoption and a strategic framework has been developed to help SMEs adopt big data analytics.The framework was converted into a scoring tool which has been applied to multiple case studies of SMEs in the UK.This paper documents the process of evaluating the framework based on the structured feedback from a focus group composed of experienced practitioners.The results of the evaluation are presented with a discussion on the results,and the paper concludes with recommendations to improve the scoring tool based on the proposed framework.The research demonstrates that this positioning tool is beneficial for SMEs to achieve competitive advantages by increasing the application of business intelligence and big data analytics. 展开更多
关键词 Big data analytics EVALUATION Small and medium sized enterprises (SMEs) Strategic framework
下载PDF
A review on edge analytics:Issues,challenges,opportunities,promises,future directions,and applications
5
作者 Sabuzima Nayak Ripon Patgiri +1 位作者 Lilapati Waikhom Arif Ahmed 《Digital Communications and Networks》 SCIE CSCD 2024年第3期783-804,共22页
Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computin... Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computing and application in edge devices lead to emerging of two new concepts in edge technology:edge computing and edge analytics.Edge analytics uses some techniques or algorithms to analyse the data generated by the edge devices.With the emerging of edge analytics,the edge devices have become a complete set.Currently,edge analytics is unable to provide full support to the analytic techniques.The edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply,small memory size,limited resources,etc.This article aims to provide a detailed discussion on edge analytics.The key contributions of the paper are as follows-a clear explanation to distinguish between the three concepts of edge technology:edge devices,edge computing,and edge analytics,along with their issues.In addition,the article discusses the implementation of edge analytics to solve many problems and applications in various areas such as retail,agriculture,industry,and healthcare.Moreover,the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues,emerging challenges,research opportunities and their directions,and applications. 展开更多
关键词 Edge analytics Edge computing Edge devices Big data Sensor Artificial intelligence Machine learning Smart technology Healthcare
下载PDF
Exploring the Association between Climate Change and Human Development: A Visual Analytics Study
6
作者 Dongli Zhang Wullianallur Raghupathi Viju Raghupathi 《Atmospheric and Climate Sciences》 2024年第4期368-395,共28页
This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Vi... This study explores the complex relationship between climate change and human development. The aim is to understand how climate change affects human development across countries, regions, and the global population. Visual analytics were used to examine the impact of various climate change indicators on different aspects of human development. The study highlights the urgent need for climate change action and encourages policymakers to make decisive moves. Climate change adversely affects numerous aspects of daily life, leading to significant consequences that must be addressed through policy changes and global governance recommendations. Key findings include that regions with higher CO2 emissions experience a significantly higher incidence of life-threatening diseases compared to regions with lower emissions. Additionally, higher CO2 emissions correlate with consistent death rates. Increased pollution exposure is associated with a higher prevalence of life-threatening diseases and higher rates of malnutrition. Moreover, greater mineral depletion is linked to more frequent life-threatening diseases, suggesting that industrialization contributes to adverse health effects. These results provide valuable insights for policy and decision-making aimed at mitigating the impact of climate change on human development. 展开更多
关键词 Air Pollution Climate Change CO2 Emissions Death Rate GDP Human Development Visual analytics
下载PDF
Leveraging Predictive Analytics for Strategic Corporate Communications: Enhancing Stakeholder Engagement and Crisis Management
7
作者 Natalie Nkembuh 《Journal of Computer and Communications》 2024年第10期51-61,共11页
This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a co... This study explores the integration of predictive analytics in strategic corporate communications, with a specific focus on stakeholder engagement and crisis management. Our mixed-methods approach, which combines a comprehensive literature review with case studies of five multinational corporations, allows us to investigate the applications, challenges, and ethical implications of leveraging predictive models in communication strategies. While our findings reveal significant potential for enhancing personalized content delivery, real-time sentiment analysis, and proactive crisis management, we stress the need for careful consideration of challenges such as data privacy concerns and algorithmic bias. This emphasis on ethical implementation is crucial in navigating the complex landscape of predictive analytics in corporate communications. To address these issues, we propose a framework that prioritizes ethical considerations. Furthermore, we identify key areas for future research, thereby contributing to the evolving field of data-driven communication management. 展开更多
关键词 Predictive analytics Corporate Communications Stakeholder Engagement Crisis Management Machine Learning Data-Driven Strategy Ethical AI Digital Transformation Reputation Management Strategic Communication
下载PDF
Model Analytics辅助的智能放疗计划建模 被引量:6
8
作者 王美娇 李莎 +4 位作者 岳海振 弓健 项小羽 郭文 张艺宝 《中国医学物理学杂志》 CSCD 2017年第9期870-873,共4页
目的:利用瓦里安公司开发的Model Analytics(MA)工具减少人工处理RapidPlan模型离群值的繁琐和主观因素导致模型构成的不确定性,评估MA工具在效率、改善统计学参数及模型优化效果等方面的表现。方法:(1)选取81例优质计划导入RapidPlan... 目的:利用瓦里安公司开发的Model Analytics(MA)工具减少人工处理RapidPlan模型离群值的繁琐和主观因素导致模型构成的不确定性,评估MA工具在效率、改善统计学参数及模型优化效果等方面的表现。方法:(1)选取81例优质计划导入RapidPlan系统并建立初始模型;(2)将初始模型上传MA进行自动分析统计,根据报告提示对离群值进行批量统计学确认,比较模型验证前后统计学指标的变化;(3)利用20例测试病例评估统计学确认前后Rapid Plan模型的剂量学表现,并与原临床计划比较。结果:MA只需几分钟便可得到构成模型计划的几何学、剂量学等特征统计,5轮分析共找出8个股骨头剂量学离群值,分别高于各自预测范围上限的11.11%、5.88%、5.56%、5.56%、5.00%、5.26%、5.56%和5.88%,R^2由0.32提高至0.45;仅用一轮分析便找出所有3个膀胱几何和剂量学离群值,其中几何离群值分别高于均值62.22%或低于均值55.35%,剂量学离群值高于预测范围上限3.33%,处理完离群值后,R^2由0.35升至0.37。测试计划表明,Rapid Plan计划质量显著优于人工计划(P<0.05),使用验证前后的模型可分别降低股骨头剂量23.15%和27.55%,降低膀胱剂量8.14%和6.79%。结论:使用MA工具可快速获取模型构成计划的整体描述,并准确查找出模型中的离群值,从而提高智能放疗计划建模的效率,但统计学确认对模型的剂量学表现影响不大。 展开更多
关键词 智能计划 RapidPlan MODEL analytics 机器学习 建模
下载PDF
国外图书馆Google Analytics应用研究述评 被引量:4
9
作者 黄晴珊 朱伟丽 《图书与情报》 CSSCI 北大核心 2013年第6期89-94,共6页
文章以Library,Information Science & Technology Abstracts数据库为信息来源,对采集到的Google Analytics应用相关文献从定量分析、研究主题、研究特色三个角度进行分析。提出图书馆应在加强Google Analytics应用的同时,注意与其... 文章以Library,Information Science & Technology Abstracts数据库为信息来源,对采集到的Google Analytics应用相关文献从定量分析、研究主题、研究特色三个角度进行分析。提出图书馆应在加强Google Analytics应用的同时,注意与其它方式结合,以掌握用户需求特点,实现科学决策。 展开更多
关键词 GOOGLE analytics 网站分析 图书馆网站 国外图书馆
下载PDF
Google Analytics在教育网站评价中的应用研究——以“教育技术学开放教育资源”网站为例 被引量:2
10
作者 马红亮 孟庆喜 《中国医学教育技术》 2012年第4期415-420,共6页
以基于Moodle的"教育技术学开放教育资源"网站为例,利用Google Analytics对该网站的受众群体、网站内容以及流量来源进行了多种维度的分析。指出:①Google Analytics能够为定量评价教育网站提供非常丰富的各类流量数据,但评... 以基于Moodle的"教育技术学开放教育资源"网站为例,利用Google Analytics对该网站的受众群体、网站内容以及流量来源进行了多种维度的分析。指出:①Google Analytics能够为定量评价教育网站提供非常丰富的各类流量数据,但评价需要综合应用不同维度、不同层次的数据进行综合分析;②在这些丰富的数据中,网站内容分析方面的数据对于以课程为中心的教育网站而言,具有十分重要的价值。 展开更多
关键词 Google analytics 教育网站 MOODLE 开放教育资源 评价
下载PDF
开放课程的开放性效果研究:基于Google Analytics的分析 被引量:12
11
作者 马红亮 《现代远距离教育》 CSSCI 2012年第4期70-74,共5页
近年来许多国内外高校纷纷将自己的课程向社会开放,然而这些开放课程的开放性效果具体如何,则需要进行多方面的评价。在众多评价方式中,Google Analytics为评价开放课程非直接教学对象的用户访问情况提供了一种全面的流量分析。应用Goog... 近年来许多国内外高校纷纷将自己的课程向社会开放,然而这些开放课程的开放性效果具体如何,则需要进行多方面的评价。在众多评价方式中,Google Analytics为评价开放课程非直接教学对象的用户访问情况提供了一种全面的流量分析。应用Google Analytics分析"教育技术学开放教育资源"网站的研究分别从网站级别和课程级别两个层次探讨了开放课程开放性效果评价的指标体系,最后得出:(1)在整个网站层次,Google Analyt-ics可用于评价开放课程开放性效果的关键指标包括访问次数、每次访问页数、网站平均停留时间、跳出率;(2)在具体课程层次,Google Analytics可用于评价开放课程开放性效果的关键指标则是浏览量和唯一身份的浏览量。 展开更多
关键词 GOOGLE analytics 开放教育资源 开放课程 评价 指标 流量
下载PDF
学习分析数据互操作规范IMS Caliper Analytics解读 被引量:9
12
作者 李青 赵越 《现代远程教育研究》 CSSCI 2016年第2期98-106,共9页
全球的MOOC浪潮推动了在线课程大规模传播和发展,由此产生了海量多样的数据。"大数据"分析技术加速应用到教育领域,评估、分析和利用这些数据对于学习效果的提升有着重要的影响。当前,各类学习系统和学习工具都按其自有的格... 全球的MOOC浪潮推动了在线课程大规模传播和发展,由此产生了海量多样的数据。"大数据"分析技术加速应用到教育领域,评估、分析和利用这些数据对于学习效果的提升有着重要的影响。当前,各类学习系统和学习工具都按其自有的格式存储和传输数据,造成其数据通用性差,而且难以被分享和深度利用。标准化组织IMS针对目前学习系统难以跨平台收集学习数据以及数据标准不一的问题,制定了一项学习分析数据互操作规范——Caliper Analytics,试图解决学习分析中有关以统一的形式收集并分析数据的关键问题。该规范通过"计量组谱"构建记录和存储分析数据的通用格式,并通过"Sensor API"捕获和传递散落在各个平台中的分析数据。这将有利于学习分析的数据交换和跨平台使用,从而让有价值的学习分析数据得以更好地利用。这个统一的标准能促使更有效地实现对在线课程质量、效果及性能的分析;帮助院校、教师和教学设计师等数字化教学内容的开发者测量、修改及迭代教育产品;帮助学习者更好地使用学习分析结果持续提升学习绩效。该规范应用前景广泛,但还将面临数据源的呈现方式、数据自有的目标用途、教育机构的组织文化、分析技术的实施效果以及商业模式上的潜在风险等方面的挑战。 展开更多
关键词 学习分析 学习技术标准 教育信息化 IMSCaliperanalytics
下载PDF
融合Google Analytics完善中小型B2C电子商务网站BI功能 被引量:1
13
作者 王刚 《电子商务》 2010年第5期60-61,共2页
本文先分析了中小型B2C电子商务网站BI功能现状,指出造成当前BI应用功能较弱的原因。在此基础上,介绍了中小型B2C电子商务网站适用的免费BI工具GoogleAnalytics的性质、获取方法以及在网站管理、网站营销和网站设计技术改进三方面的应... 本文先分析了中小型B2C电子商务网站BI功能现状,指出造成当前BI应用功能较弱的原因。在此基础上,介绍了中小型B2C电子商务网站适用的免费BI工具GoogleAnalytics的性质、获取方法以及在网站管理、网站营销和网站设计技术改进三方面的应用功能,着重介绍了"跟踪电子商务交易"功能的现实意义,为中小型B2C电子商务网站完善BI功能提供了一个低成本、低技术门槛的选择。 展开更多
关键词 GOOGLE analytics B2C 电子商务网站 BI
下载PDF
Google Analytics在校园网站数据分析中的应用 被引量:2
14
作者 张成龙 李丽娇 《现代教育技术》 CSSCI 2013年第9期52-55,51,共5页
文章详细介绍了Google Analytics数据统计分析工具,并对如何应用进行了探讨。结合实际的应用情况,举例说明了在校园网站中使用Google Analytics的结果。通过"受众群体"分析、"流量来源"分析和"内容"分析... 文章详细介绍了Google Analytics数据统计分析工具,并对如何应用进行了探讨。结合实际的应用情况,举例说明了在校园网站中使用Google Analytics的结果。通过"受众群体"分析、"流量来源"分析和"内容"分析,可以有针对性地对校园网站进行调整、布局,对师生或访问者关心的内容加以充实。 展开更多
关键词 Googleanalytic校园网站 数据分析 应用
下载PDF
欧特克携手Dodge Data & Analytics发布《中国BIM应用价值研究报告》 被引量:6
15
作者 宁忠意 《中外建筑》 2015年第6期19-21,共3页
4月27日,全球二维和三维设计、工程及娱乐软件的领导者欧特克有限公司("欧特克"或"Autodesk")与Dodge Data&Analytics在上海国金中心的利思卡尔顿酒店共同发布了最新的《中国BIM应用价值研究报告》。欧特克与Dodge Data&Analyt... 4月27日,全球二维和三维设计、工程及娱乐软件的领导者欧特克有限公司("欧特克"或"Autodesk")与Dodge Data&Analytics在上海国金中心的利思卡尔顿酒店共同发布了最新的《中国BIM应用价值研究报告》。欧特克与Dodge Data&Analytics(DD&A)的高层管理人员出席了活动并发表了演讲,与参会者分享了BIM技术在中国市场的最新应用和发展趋势。同时,他们还与媒体朋友共同探讨如何深化BIM应用在中国的普及, 展开更多
关键词 DODGE DATA 欧特克 BIM analytics 研究报告 卡尔顿 三维设计 AUTODESK 管理人员 二次开发
下载PDF
Web Analytics中的隐私保护问题
16
作者 李慧 罗玮 《中国电子商务》 2010年第8期56-56,共1页
Web Analytics作为基于数据的的对网站建设与优化的量化分析,数据在Web Analytics中占有很地位。而这些私人性很强的数据如何才能很好的保护其隐私性,这是一个值得我们关注的问题。
关键词 WEB analytics 数据 隐私 Cookfes
下载PDF
开放课程中的学习行为分析:来自Google Analytics的证据 被引量:14
17
作者 罗恒 杨婷婷 +1 位作者 伊丽莎.理查德森 左明章 《中国电化教育》 CSSCI 北大核心 2017年第10期8-14,31,共8页
开放课程是开放教育资源运动的重要组成部分,对促进社会知识传播、推动教育全球化、实现教育公平有着重要意义。然而目前人们对开放课程中学习者社群及其学习行为的认识不够客观、全面和深入,缺乏基于实证数据的结论与发现。针对该研究... 开放课程是开放教育资源运动的重要组成部分,对促进社会知识传播、推动教育全球化、实现教育公平有着重要意义。然而目前人们对开放课程中学习者社群及其学习行为的认识不够客观、全面和深入,缺乏基于实证数据的结论与发现。针对该研究需求,该文利用Google Analytics网站流量分析工具对宾夕法尼亚州立大学一门开放课程中长达六年的网站流量数据进行了收集与分析,通过对学习者特征、在线学习行为和技术设备使用情况的统计和可视化呈现,揭示了高校开放课程中学习者社群和学习行为总体特点和衍变趋势。同时该文也探讨了利用Google Analytics工具进行学习行为分析的利弊。该文中呈现的在线学习行为统计结论能增进人们对开放课程这种新兴教学情境的了解,指导人们对在线课程网站和资源进行有针对性地评价与修改。 展开更多
关键词 开放课程 学习行为分析 网站流量分析 学习分析 GOOGLE analytics
下载PDF
Big Data Analytics in Telecommunications: Literature Review and Architecture Recommendations 被引量:6
18
作者 Hira Zahid Tariq Mahmood +1 位作者 Ahsan Morshed Timos Sellis 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期18-38,共21页
This paper focuses on facilitating state-of-the-art applications of big data analytics(BDA) architectures and infrastructures to telecommunications(telecom) industrial sector.Telecom companies are dealing with terabyt... This paper focuses on facilitating state-of-the-art applications of big data analytics(BDA) architectures and infrastructures to telecommunications(telecom) industrial sector.Telecom companies are dealing with terabytes to petabytes of data on a daily basis. Io T applications in telecom are further contributing to this data deluge. Recent advances in BDA have exposed new opportunities to get actionable insights from telecom big data. These benefits and the fast-changing BDA technology landscape make it important to investigate existing BDA applications to telecom sector. For this, we initially determine published research on BDA applications to telecom through a systematic literature review through which we filter 38 articles and categorize them in frameworks, use cases, literature reviews, white papers and experimental validations. We also discuss the benefits and challenges mentioned in these articles. We find that experiments are all proof of concepts(POC) on a severely limited BDA technology stack(as compared to the available technology stack), i.e.,we did not find any work focusing on full-fledged BDA implementation in an operational telecom environment. To facilitate these applications at research-level, we propose a state-of-the-art lambda architecture for BDA pipeline implementation(called Lambda Tel) based completely on open source BDA technologies and the standard Python language, along with relevant guidelines.We discovered only one research paper which presented a relatively-limited lambda architecture using the proprietary AWS cloud infrastructure. We believe Lambda Tel presents a clear roadmap for telecom industry practitioners to implement and enhance BDA applications in their enterprises. 展开更多
关键词 Big data analytics BDA pipeline BDA technology stack lambda architecture python systematic literature review telecommunications
下载PDF
Video Analytics Framework for Human Action Recognition 被引量:1
19
作者 Muhammad Attique Khan Majed Alhaisoni +4 位作者 Ammar Armghan Fayadh Alenezi Usman Tariq Yunyoung Nam Tallha Akram 《Computers, Materials & Continua》 SCIE EI 2021年第9期3841-3859,共19页
Human action recognition(HAR)is an essential but challenging task for observing human movements.This problem encompasses the observations of variations in human movement and activity identification by machine learning... Human action recognition(HAR)is an essential but challenging task for observing human movements.This problem encompasses the observations of variations in human movement and activity identification by machine learning algorithms.This article addresses the challenges in activity recognition by implementing and experimenting an intelligent segmentation,features reduction and selection framework.A novel approach has been introduced for the fusion of segmented frames and multi-level features of interests are extracted.An entropy-skewness based features reduction technique has been implemented and the reduced features are converted into a codebook by serial based fusion.A custom made genetic algorithm is implemented on the constructed features codebook in order to select the strong and wellknown features.The features are exploited by a multi-class SVM for action identification.Comprehensive experimental results are undertaken on four action datasets,namely,Weizmann,KTH,Muhavi,and WVU multi-view.We achieved the recognition rate of 96.80%,100%,100%,and 100%respectively.Analysis reveals that the proposed action recognition approach is efficient and well accurate as compare to existing approaches. 展开更多
关键词 Video analytics action recognition features classification ENTROPY data analytic
下载PDF
Big Data Stream Analytics for Near Real-Time Sentiment Analysis 被引量:1
20
作者 Otto K. M. Cheng Raymond Lau 《Journal of Computer and Communications》 2015年第5期189-195,共7页
In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedente... In the era of big data, huge volumes of data are generated from online social networks, sensor networks, mobile devices, and organizations’ enterprise systems. This phenomenon provides organizations with unprecedented opportunities to tap into big data to mine valuable business intelligence. However, traditional business analytics methods may not be able to cope with the flood of big data. The main contribution of this paper is the illustration of the development of a novel big data stream analytics framework named BDSASA that leverages a probabilistic language model to analyze the consumer sentiments embedded in hundreds of millions of online consumer reviews. In particular, an inference model is embedded into the classical language modeling framework to enhance the prediction of consumer sentiments. The practical implication of our research work is that organizations can apply our big data stream analytics framework to analyze consumers’ product preferences, and hence develop more effective marketing and production strategies. 展开更多
关键词 BIG DATA DATA STREAM analytics SENTIMENT Analysis ONLINE Review
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部