The widespread use of advanced electronic devices has led to the emergence of spatial crowdsourcing,a method that taps into collective efforts to perform real-world tasks like environmental monitoring and traffic surv...The widespread use of advanced electronic devices has led to the emergence of spatial crowdsourcing,a method that taps into collective efforts to perform real-world tasks like environmental monitoring and traffic surveillance.Our research focuses on a specific type of spatial crowdsourcing that involves ongoing,collaborative efforts for continuous spatial data acquisition.However,due to limited budgets and workforce availability,the collected data often lacks completeness,posing a data deficiency problem.To address this,we propose a reciprocal framework to optimize task assignments by leveraging the mutual benefits of spatiotemporal subtask execution.We introduce an entropy-based quality metric to capture the combined effects of incomplete data acquisition and interpolation imprecision.Building on this,we explore a quality-aware task assignment method,corresponding to spatiotemporal assignment strategies.Since the assignment problem is NP-hard,we develop a polynomial-time algorithm with the guaranteed approximation ratio.Novel indexing and pruning techniques are proposed to further enhance performance.Extensive experiments conducted on datasets validate the effectiveness of our methods.展开更多
In the era of the Internet of Things(IoT),the crowdsourcing process is driven by data collected by devices that interact with each other and with the physical world.As a part of the IoT ecosystem,task assignment has b...In the era of the Internet of Things(IoT),the crowdsourcing process is driven by data collected by devices that interact with each other and with the physical world.As a part of the IoT ecosystem,task assignment has become an important goal of the research community.Existing task assignment algorithms can be categorized as offline(performs better with datasets but struggles to achieve good real-life results)or online(works well with real-life input but is difficult to optimize regarding in-depth assignments).This paper proposes a Cross-regional Online Task(CROT)assignment problem based on the online assignment model.Given the CROT problem,an Online Task Assignment across Regions based on Prediction(OTARP)algorithm is proposed.OTARP is a two-stage graphics-driven bilateral assignment strategy that uses edge cloud and graph embedding to complete task assignments.The first stage uses historical data to make offline predictions,with a graph-driven method for offline bipartite graph matching.The second stage uses a bipartite graph to complete the online task assignment process.This paper proposes accelerating the task assignment process through multiple assignment rounds and optimizing the process by combining offline guidance and online assignment strategies.To encourage crowd workers to complete crowd tasks across regions,an incentive strategy is designed to encourage crowd workers’movement.To avoid the idle problem in the process of crowd worker movement,a drop-by-rider problem is used to help crowd workers accept more crowd tasks,optimize the number of assignments,and increase utility.Finally,through comparison experiments on real datasets,the performance of the proposed algorithm on crowd worker utility value and the matching number is evaluated.展开更多
文摘The widespread use of advanced electronic devices has led to the emergence of spatial crowdsourcing,a method that taps into collective efforts to perform real-world tasks like environmental monitoring and traffic surveillance.Our research focuses on a specific type of spatial crowdsourcing that involves ongoing,collaborative efforts for continuous spatial data acquisition.However,due to limited budgets and workforce availability,the collected data often lacks completeness,posing a data deficiency problem.To address this,we propose a reciprocal framework to optimize task assignments by leveraging the mutual benefits of spatiotemporal subtask execution.We introduce an entropy-based quality metric to capture the combined effects of incomplete data acquisition and interpolation imprecision.Building on this,we explore a quality-aware task assignment method,corresponding to spatiotemporal assignment strategies.Since the assignment problem is NP-hard,we develop a polynomial-time algorithm with the guaranteed approximation ratio.Novel indexing and pruning techniques are proposed to further enhance performance.Extensive experiments conducted on datasets validate the effectiveness of our methods.
基金supported in part by the National Natural Science Foundation of China under Grant 62072392,Grant 61822602,Grant 61772207,Grant 61802331,Grant 61602399,Grant 61702439,Grant 61773331,and Grant 62062034the China Postdoctoral Science Foundation under Grant 2019T120732 and Grant 2017M622691+2 种基金the Natural Science Foundation of Shandong Province under Grant ZR2016FM42the Major scientific and technological innovation projects of Shandong Province under Grant 2019JZZY020131the Key projects of Shandong Natural Science Foundation under Grant ZR2020KF019.
文摘In the era of the Internet of Things(IoT),the crowdsourcing process is driven by data collected by devices that interact with each other and with the physical world.As a part of the IoT ecosystem,task assignment has become an important goal of the research community.Existing task assignment algorithms can be categorized as offline(performs better with datasets but struggles to achieve good real-life results)or online(works well with real-life input but is difficult to optimize regarding in-depth assignments).This paper proposes a Cross-regional Online Task(CROT)assignment problem based on the online assignment model.Given the CROT problem,an Online Task Assignment across Regions based on Prediction(OTARP)algorithm is proposed.OTARP is a two-stage graphics-driven bilateral assignment strategy that uses edge cloud and graph embedding to complete task assignments.The first stage uses historical data to make offline predictions,with a graph-driven method for offline bipartite graph matching.The second stage uses a bipartite graph to complete the online task assignment process.This paper proposes accelerating the task assignment process through multiple assignment rounds and optimizing the process by combining offline guidance and online assignment strategies.To encourage crowd workers to complete crowd tasks across regions,an incentive strategy is designed to encourage crowd workers’movement.To avoid the idle problem in the process of crowd worker movement,a drop-by-rider problem is used to help crowd workers accept more crowd tasks,optimize the number of assignments,and increase utility.Finally,through comparison experiments on real datasets,the performance of the proposed algorithm on crowd worker utility value and the matching number is evaluated.