期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction
1
作者 Dong-Hoon Shin Seo-El Lee +1 位作者 Byeong-Uk Jeon Kyungyong Chung 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1925-1940,共16页
Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS... Recently,the importance of data analysis has increased significantly due to the rapid data increase.In particular,vehicle communication data,considered a significant challenge in Intelligent Transportation Systems(ITS),has spatiotemporal characteristics and many missing values.High missing values in data lead to the decreased predictive performance of models.Existing missing value imputation models ignore the topology of transportation net-works due to the structural connection of road networks,although physical distances are close in spatiotemporal image data.Additionally,the learning process of missing value imputation models requires complete data,but there are limitations in securing complete vehicle communication data.This study proposes a missing value imputation model based on adversarial autoencoder using spatiotemporal feature extraction to address these issues.The proposed method replaces missing values by reflecting spatiotemporal characteristics of transportation data using temporal convolution and spatial convolution.Experimental results show that the proposed model has the lowest error rate of 5.92%,demonstrating excellent predictive accuracy.Through this,it is possible to solve the data sparsity problem and improve traffic safety by showing superior predictive performance. 展开更多
关键词 Missing value adversarial autoencoder spatiotemporal feature extraction
下载PDF
An adaptive representation model for geoscience knowledge graphs considering complex spatiotemporal features and relationships
2
作者 Yunqiang ZHU Kai SUN +6 位作者 Shu WANG Chenghu ZHOU Feng LU Hairong LV Qinjun QIU Xinbing WANG Yanmin QI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第11期2563-2578,共16页
Geoscience knowledge graph(GKG)can organize various geoscience knowledge into a machine understandable and computable semantic network and is an effective way to organize geoscience knowledge and provide knowledge-rel... Geoscience knowledge graph(GKG)can organize various geoscience knowledge into a machine understandable and computable semantic network and is an effective way to organize geoscience knowledge and provide knowledge-related services.As a result,it has gained significant attention and become a frontier in geoscience.Geoscience knowledge is derived from many disciplines and has complex spatiotemporal features and relationships of multiple scales,granularities,and dimensions.Therefore,establishing a GKG representation model conforming to the characteristics of geoscience knowledge is the basis and premise for the construction and application of GKG.However,existing knowledge graph representation models leverage fixed tuples that are limited in fully representing complex spatiotemporal features and relationships.To address this issue,this paper first systematically analyzes the categorization and spatiotemporal features and relationships of geoscience knowledge.On this basis,an adaptive representation model for GKG is proposed by considering the complex spatiotemporal features and relationships.Under the constraint of a unified spatiotemporal ontology,this model adopts different tuples to adaptively represent different types of geoscience knowledge according to their spatiotemporal correlation.This model can efficiently represent geoscience knowledge,thereby avoiding the isolation of the spatiotemporal feature representation and improving the accuracy and efficiency of geoscience knowledge retrieval.It can further enable the alignment,transformation,computation,and reasoning of spatiotemporal information through a spatiotemporal ontology. 展开更多
关键词 GEOSCIENCE Knowledge graph Representation model spatiotemporal features spatiotemporal relationships
原文传递
STCANet:Spatiotemporal Coupled Attention Network for Ocean Surface Current Prediction
3
作者 XIE Cui CHEN Ping +1 位作者 MAN Tenghao DONG Junyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期441-451,共11页
Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability o... Currently,numerical models based on idealized assumptions,complex algorithms and high computational costs are unsatisfactory for ocean surface current prediction.Moreover,the complex temporal and spatial variability of ocean currents also makes the prediction methods based on time series data challenging.The deep network model can automatically learn and extract complex features hidden in large amount of complex data,so it is a promising method for high quality prediction of ocean currents.In this paper,we propose a spatiotemporal coupled attention deep network model STCANet that can extract abundant temporal and spatial coupling information on the behavior characteristics of ocean currents for improving the prediction accuracy.Firstly,Spatial Module is designed and implemented to extract the spatiotemporal coupling characteristics of ocean currents,and meanwhile the spatial correlations and dependencies among adjacent sea areas are obtained through Spatial Channel Attention Module(SCAM).Secondly,we use the GatedRecurrent-Unit(GRU)to extract temporal relationships of ocean currents,and design and implement the nearest neighbor time attention module to extract the interdependences of ocean currents between adjacent times,which can further improve the accuracy of ocean current prediction.Finally,a series of comparative experiments on the MediSea_Dataset and EastSea_Dataset showed that the prediction quality of our model greatly outperforms those of other benchmark models such as History Average(HA),Autoregressive Integrated Moving Average Model(ARIMA),Long Short-term Memory(LSTM),Gate Recurrent Unit(GRU)and CNN_GRU. 展开更多
关键词 ocean surface current prediction spatiotemporal coupling features deep learning attention mechanism
下载PDF
A Lightweight Driver Drowsiness Detection System Using 3DCNN With LSTM
4
作者 Sara A.Alameen Areej M.Alhothali 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期895-912,共18页
Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepin... Today,fatalities,physical injuries,and significant economic losses occur due to car accidents.Among the leading causes of car accidents is drowsiness behind the wheel,which can affect any driver.Drowsiness and sleepiness often have associated indicators that researchers can use to identify and promptly warn drowsy drivers to avoid potential accidents.This paper proposes a spatiotemporal model for monitoring drowsiness visual indicators from videos.This model depends on integrating a 3D convolutional neural network(3D-CNN)and long short-term memory(LSTM).The 3DCNN-LSTM can analyze long sequences by applying the 3D-CNN to extract spatiotemporal features within adjacent frames.The learned features are then used as the input of the LSTM component for modeling high-level temporal features.In addition,we investigate how the training of the proposed model can be affected by changing the position of the batch normalization(BN)layers in the 3D-CNN units.The BN layer is examined in two different placement settings:before the non-linear activation function and after the non-linear activation function.The study was conducted on two publicly available drowsy drivers datasets named 3MDAD and YawDD.3MDAD is mainly composed of two synchronized datasets recorded from the frontal and side views of the drivers.We show that the position of the BN layers increases the convergence speed and reduces overfitting on one dataset but not the other.As a result,the model achieves a test detection accuracy of 96%,93%,and 90%on YawDD,Side-3MDAD,and Front-3MDAD,respectively. 展开更多
关键词 3D-CNN deep learning driver drowsiness detection LSTM spatiotemporal features
下载PDF
3DMKDR:3D Multiscale Kernels CNN Model for Depression Recognition Based on EEG
5
作者 Yun Su Zhixuan Zhang +2 位作者 Qi Cai Bingtao Zhang Xiaohong Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期230-241,共12页
Depression has become a major health threat around the world,especially for older people,so the effective detection method for depression is a great public health challenge.Electroencephalogram(EEG)can be used as a bi... Depression has become a major health threat around the world,especially for older people,so the effective detection method for depression is a great public health challenge.Electroencephalogram(EEG)can be used as a biomarker to effectively explore depression recognition.Motivated by the studies that multiple smaller scale kernels could increase nonlinear expression compared to a larger kernel,this article proposes a model named the three-dimensional multiscale kernels convolutional neural network model for the depression disorder recognition(3DMKDR),which is a three-dimensional convolutional neural network model with multiscale convolutional kernels for depression recognition based on EEG signals.A three-dimensional structure of the EEG is built by extending one-dimensional feature sequences into a two-dimensional electrode matrix to excavate the related spatiotemporal information among electrodes and the collected electrode matrix.By the major depressive disorder(MDD)and the multi-modal open dataset for mental-disorder analysis(MODMA)datasets,the experiment shows that the accuracies of depression recognition are up to99.86%and 98.01%in the subject-dependent experiment,and 95.80%and 82.27%in the subjectindependent experiment,which are higher than alternative competitive methods.The experimental results demonstrate that the proposed 3DMKDR is potentially useful for depression recognition in older persons in the future. 展开更多
关键词 major depression disorder(MDD) electroencephalogram(EEG) three-dimensional convolutional neural network(3D-CNN) spatiotemporal features
下载PDF
Engagement Detection Based on Analyzing Micro Body Gestures Using 3D CNN
6
作者 Shoroog Khenkar Salma Kammoun Jarraya 《Computers, Materials & Continua》 SCIE EI 2022年第2期2655-2677,共23页
This paper proposes a novel,efficient and affordable approach to detect the students’engagement levels in an e-learning environment by using webcams.Our method analyzes spatiotemporal features of e-learners’micro bo... This paper proposes a novel,efficient and affordable approach to detect the students’engagement levels in an e-learning environment by using webcams.Our method analyzes spatiotemporal features of e-learners’micro body gestures,which will be mapped to emotions and appropriate engagement states.The proposed engagement detection model uses a three-dimensional convolutional neural network to analyze both temporal and spatial information across video frames.We follow a transfer learning approach by using the C3D model that was trained on the Sports-1M dataset.The adopted C3D model was used based on two different approaches;as a feature extractor with linear classifiers and a classifier after applying fine-tuning to the pretrained model.Our model was tested and its performance was evaluated and compared to the existing models.It proved its effectiveness and superiority over the other existing methods with an accuracy of 94%.The results of this work will contribute to the development of smart and interactive e-learning systems with adaptive responses based on users’engagement levels. 展开更多
关键词 Micro body gestures engagement detection 3D CNN transfer learning e-learning spatiotemporal features
下载PDF
Spatiotemporal emotion recognition based on 3D time-frequency domain feature matrix
7
作者 Chao Hao Lian Weifang Liu Yongli 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第5期62-72,共11页
The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals... The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals,which may contain important characteristics related to emotional states.Aiming at the above defects,a spatiotemporal emotion recognition method based on a 3-dimensional(3 D)time-frequency domain feature matrix was proposed.Specifically,the extracted time-frequency domain EEG features are first expressed as a 3 D matrix format according to the actual position of the cerebral cortex.Then,the input 3 D matrix is processed successively by multivariate convolutional neural network(MVCNN)and long short-term memory(LSTM)to classify the emotional state.Spatiotemporal emotion recognition method is evaluated on the DEAP data set,and achieved accuracy of 87.58%and 88.50%on arousal and valence dimensions respectively in binary classification tasks,as well as obtained accuracy of 84.58%in four class classification tasks.The experimental results show that 3 D matrix representation can represent emotional information more reasonably than two-dimensional(2 D).In addition,MVCNN and LSTM can utilize the spatial information of the electrode channels and the temporal context information of the EEG signal respectively. 展开更多
关键词 spatiotemporal emotion recognition model 3-dimensinal(3D)feature matrix time-frequency features multivariate convolutional neural network(MVCNN) long short-term memory(LSTM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部