期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
时空RPCA在复杂场景下的运动目标检测 被引量:4
1
作者 张超婕 余勤 《计算机工程与设计》 北大核心 2020年第1期197-202,共6页
在复杂动态背景下,鲁棒主成分分析模型(RPCA)容易将背景中动态背景误判为前景运动目标,导致运动目标检测精度不高。为解决该问题,提出一种基于非凸加权核范数的时空低秩RPCA算法。使用非凸加权核范数替代传统的核范数进行低秩约束,在观... 在复杂动态背景下,鲁棒主成分分析模型(RPCA)容易将背景中动态背景误判为前景运动目标,导致运动目标检测精度不高。为解决该问题,提出一种基于非凸加权核范数的时空低秩RPCA算法。使用非凸加权核范数替代传统的核范数进行低秩约束,在观测矩阵上通过拉普拉斯特征映射得到时空图拉普拉斯矩阵,将得到的时空图拉普拉斯矩阵嵌入低秩背景矩阵以保持背景对噪声和离群值的鲁棒性。实验结果表明,所提模型在复杂场景中能较准确检测出运动目标。 展开更多
关键词 鲁棒主成分分析 非凸加权核范数 时空低秩rpca算法 拉普拉斯特征映射 运动目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部