Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal re...Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.展开更多
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys...For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.展开更多
Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform samp...Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.展开更多
In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when...In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).展开更多
Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes. Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics softwa...Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes. Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics software and for investigating influences of various factors on the data. Compared to data from real microbiome samples or from defined microbial mock community, simulated data with proper computational models are better for the purpose as they provide more flexibility for controlling multiple factors. Methods: We developed a non-uniform metagenomic sequencing simulation system (nuMetaSim) that is capable of mimicking various factors in real metagenomic sequencing to reflect multiple properties of real data with customizable parameter settings. Results: We generated 9 comprehensive metagenomic datasets with different composition complexity from of 203 bacterial genomes and 2 archaeal genomes related with human intestine system. Conclusion: The data can serve as benchmarks for comparing performance of different methods at different situations, and the software package allows users to generate simulation data that can better reflect the specific properties in their scenarios.展开更多
In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of ...In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of the mean of ratios for missing data under uniform response is applied to the estimation of a finite population mean when the PPSWR sampling is used. The imputed estimator is valid under the corresponding response mechanism regardless of the model as well as under the ratio model regardless of the response mechanism. The approximately unbiased jackknife variance estimator is also presented. All of these results are extended to the case of non-uniform response. Simulation studies show the good performance of the proposed estimators.展开更多
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the ...The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on.展开更多
Current spectral analysis for evaluating the rail ride quality effectively is based on the sampling data at a uniform time interval, but the train is of fluctuation velocity in motion, which results in a non-uniform i...Current spectral analysis for evaluating the rail ride quality effectively is based on the sampling data at a uniform time interval, but the train is of fluctuation velocity in motion, which results in a non-uniform interval between consecutive sampling data. Therefore the accuracy of routine spectral analysis is in doubt when applying it in evaluating the rail ride quality. This paper presents a new way, namely, re-sampling with variable frequency to eliminate the influence of the train's uneven velocity. Its feature is that there is no need for precision measurement of the train's moving speed. Experiment results from the test-bed of rolling stock vibration show that it is valid.展开更多
The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sa...The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sampler phase detector and Digital Controlled Oscillator (DCO) lead to unstable and chaotic operation when the filter gains are high. FPI will be used to stabilize the chaotic operation and consequently extend the lock range of the loop. The proposed stabilized loop can work in higher filter gains which are needed for faster signal acquisition.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602201)the international partnership program of the Chinese Academy of Sciences(No.211134KYSB20200057).
文摘Various electromagnetic signals are excited by the beam in the acceleration and beam-diagnostic elements of a particle accelerator.It is important to obtain time-domain waveforms of these signals with high temporal resolution for research,such as the study of beam–cavity interactions and bunch-by-bunch parameter measurements.Therefore,a signal reconstruction algorithm with ultrahigh spatiotemporal resolution and bunch phase compensation based on equivalent sampling is proposed in this paper.Compared with traditional equivalent sampling,the use of phase compensation and setting the bunch signal zero-crossing point as the time reference can construct a more accurate reconstructed signal.The basic principles of the method,simulation,and experimental comparison are also introduced.Based on the beam test platform of the Shanghai Synchrotron Radiation Facility(SSRF)and the method of experimental verification,the factors that affect the reconstructed signal quality are analyzed and discussed,including the depth of the sampled data,quantization noise of analog-to-digital converter,beam transverse oscillation,and longitudinal oscillation.The results of the beam experiments show that under the user operation conditions of the SSRF,a beam excitation signal with an amplitude uncertainty of 2%can be reconstructed.
基金supported by the National Natural Science Foundation of China(61273070,61203092)the Enterprise-college-institute Cooperative Project of Jiangsu Province(BY2015019-21)+1 种基金111 Project(B12018)the Fun-damental Research Funds for the Central Universities(JUSRP51733B)
文摘For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm.
基金Projects 07KJZ11 supported by the President Fund of Xuzhou Medical School07KJB310117 by the Education Department of Jiangsu Province
文摘Using the quantitative error probability density method we studied the S/N ratio of alternately sampled signals digitized by a 4-channel A/D. A complete expression for the S/N ratio of a 4-channel A/D non-uniform sampling signal was deduced. First we obtained an expression for the S/N ratio of a 1-channel A/D uniform sampling signal when the sampling frequency was equal to or greater than 2 times the frequency of the sampled signal. Based on the S/N ratio of a 2-channel A/D,alternating,non-uniform sampling signal,we analyzed the distribution of quantitative error using the quantitative error probability density method and the distribution convolution formula. From this the S/N ratio expression of a 4-channel A/D sampling signal was deduced. The simulation result shows that the deduced expression is correct.
文摘In this paper, a fast algorithm to reconstruct the spectrum of non-uniformly sampled signals is proposed. Compared with the original algorithm, the fast algorithm has a higher computational efficiency, especially when sampling sequence is long. Particularly, a transformation matrix is built, and the reconstructed spectrum is perfectly synthesized from the spectrum of every sampling channel. The fast algorithm has solved efficiency issues of spectrum reconstruction algorithm, and making it possible for the actual application of spectrum reconstruction algorithm in multi-channel Synthetic Aperture Radar (SAR).
基金We thank Dr. Hongfei Cui for her comments on the simulation design. This work is partially supported by the National Natural Science Foundation of China (Nos. 61673231 and 61721003).
文摘Background: Metagenomic sequencing is a complex sampling procedure from unknown mixtures of many genomes. Having metagenome data with known genome compositions is essential for both benchmarking bioinformatics software and for investigating influences of various factors on the data. Compared to data from real microbiome samples or from defined microbial mock community, simulated data with proper computational models are better for the purpose as they provide more flexibility for controlling multiple factors. Methods: We developed a non-uniform metagenomic sequencing simulation system (nuMetaSim) that is capable of mimicking various factors in real metagenomic sequencing to reflect multiple properties of real data with customizable parameter settings. Results: We generated 9 comprehensive metagenomic datasets with different composition complexity from of 203 bacterial genomes and 2 archaeal genomes related with human intestine system. Conclusion: The data can serve as benchmarks for comparing performance of different methods at different situations, and the software package allows users to generate simulation data that can better reflect the specific properties in their scenarios.
基金Supported by NationalNatural Science Foundation of China (Grant Nos. 70625004, 10721101 and 70933003)
文摘In practical survey sampling, nonresponse phenomenon is unavoidable. How to impute missing data is an important problem. There are several imputation methods in the literature. In this paper, the imputation method of the mean of ratios for missing data under uniform response is applied to the estimation of a finite population mean when the PPSWR sampling is used. The imputed estimator is valid under the corresponding response mechanism regardless of the model as well as under the ratio model regardless of the response mechanism. The approximately unbiased jackknife variance estimator is also presented. All of these results are extended to the case of non-uniform response. Simulation studies show the good performance of the proposed estimators.
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
基金supported by Hunan Education Office Foundation under Grant 06C260
文摘The dropping off of data during information transmission and the storage device’s damage etc.often leads the sampled data to be non-uniform.The paper, based on the stability theory of irregular wavelet frame and the irregular weighted wavelet frame operator,proposed an irregular weighted wavelet fame conjugate gradient iterative algorithm for the reconstruction of non-uniformly sampling signal. Compared the experiment results with the iterative algorithm of the Ref.[5],the new algorithm has remarkable advantages in approximation error,running time and so on.
基金Supported by Major Engineering Project Culture Foundation of Science and Technology's New Ideas in Colleges and Universities (No.705044)
文摘Current spectral analysis for evaluating the rail ride quality effectively is based on the sampling data at a uniform time interval, but the train is of fluctuation velocity in motion, which results in a non-uniform interval between consecutive sampling data. Therefore the accuracy of routine spectral analysis is in doubt when applying it in evaluating the rail ride quality. This paper presents a new way, namely, re-sampling with variable frequency to eliminate the influence of the train's uneven velocity. Its feature is that there is no need for precision measurement of the train's moving speed. Experiment results from the test-bed of rolling stock vibration show that it is valid.
文摘The stable operation of first and second order Zero Crossing Digital Phase Locked Loop (ZCDPLL) is extended by using a Fixed Point Iteration (FPI) method with relaxation. The non-linear components of ZCDPLL such as sampler phase detector and Digital Controlled Oscillator (DCO) lead to unstable and chaotic operation when the filter gains are high. FPI will be used to stabilize the chaotic operation and consequently extend the lock range of the loop. The proposed stabilized loop can work in higher filter gains which are needed for faster signal acquisition.