A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intr...A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intrusion. The recognition process includes three stages: (1) feature selection and data normalization processing;(2) learning the training data selected from the feature data set; (3) identifying the intrusion and generating the result report of machine condition classification. Experimental results show that the proposed method is promising in terms of detection accuracy, computational expense and implementation for intrusion detection.展开更多
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl...A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.展开更多
Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate predi...Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate prediction results. The goal of this paper is to develop and implement an intelligent based system to predict secondary structure of a protein from its primary amino acid sequence by using five models of Neural Network (NN). These models are Feed Forward Neural Network (FNN), Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Convolutional Neural Network (CNN), and CNN Fine Tuning for PSSP. To evaluate our approaches two datasets have been used. The first one contains 114 protein samples, and the second one contains 1845 protein samples.展开更多
基金Supported by the National Natural Science Foundation of China (60573047), Natural Science Foundation of the Science and Technology Committee of Chongqing (8503) and the Applying Basic Research of the Education Committee of Chongqing (KJ060804)
文摘A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intrusion. The recognition process includes three stages: (1) feature selection and data normalization processing;(2) learning the training data selected from the feature data set; (3) identifying the intrusion and generating the result report of machine condition classification. Experimental results show that the proposed method is promising in terms of detection accuracy, computational expense and implementation for intrusion detection.
文摘A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method.
文摘Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate prediction results. The goal of this paper is to develop and implement an intelligent based system to predict secondary structure of a protein from its primary amino acid sequence by using five models of Neural Network (NN). These models are Feed Forward Neural Network (FNN), Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Convolutional Neural Network (CNN), and CNN Fine Tuning for PSSP. To evaluate our approaches two datasets have been used. The first one contains 114 protein samples, and the second one contains 1845 protein samples.