Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elem...Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elements co-exist in the layer(e.g. Ni, Co and Mn). By contrast, the configuration tends to be ordered if the elements are Li and Mn. Here, by using special quasi-random structures(SQS) algorithm, the essential reasons of the ordering in a promising Li-rich Mn-based cathode material Li2MnO3 are investigated. The difference of internal energy and entropy between ordered and disordered materials is calculated. As a result, based on the Gibbs free energy, it is found that Li2MnO3 should have an ordered structure in TM layer. In comparison, structures with Ni-Mn ratio of 2:1 are predicted to have a disordered TM layer, because the entropy terms have larger impact on the structural ordering than internal energy terms.展开更多
NiCo-based superalloys exhibit higher strength and creep resistance over conventional superalloys.Compositional effects on elastic properties of the γ and γ' phases in newly-developed NiCo-based superalloys were...NiCo-based superalloys exhibit higher strength and creep resistance over conventional superalloys.Compositional effects on elastic properties of the γ and γ' phases in newly-developed NiCo-based superalloys were investigated by first-principles calculation combined with special quasi-random structures.The lattice constant,bulk modulus,and elastic constants vary linearly with the Co concentration in the NiCo solution.In the selected(Ni,Co)3(Al,W)and(Ni,Co)3(Al,Ti)model γ' phase,the lattice constant,and bulk modulus show a linear trend with alloying element concentrations.The addition of Co,Ti,and W can regulate lattice mismatch and increase the bulk modulus,simultaneously.W-addition shows excellent performance in strengthening the elastic properties in the γ' phase.Systems become unstable with higher W and Ni contents,e.g.,(Ni0.75Co0.25)3(Al0.25 W0.75),and become brittle with higher W and Co addition,e.g.,Co3(Al0.25 W0.75).Furthermore,Co,Ti,and W can increase the elastic constants on the whole,and such high elastic constants always correspond to a high elastic modulus.The anisotropy index always corresponds to the nature of Young's modulus in a specific direction.展开更多
基金Supported by National Key R&D Program of China(2016YFB0700600)Soft Science Research Project of Guangdong Province(No.2017B030301013)
文摘Layered transition metal(TM) oxides are one of the most widely used cathode materials in lithium-ion batteries. The atomic configuration in TM layer of these materials is often known to be random when multiple TM elements co-exist in the layer(e.g. Ni, Co and Mn). By contrast, the configuration tends to be ordered if the elements are Li and Mn. Here, by using special quasi-random structures(SQS) algorithm, the essential reasons of the ordering in a promising Li-rich Mn-based cathode material Li2MnO3 are investigated. The difference of internal energy and entropy between ordered and disordered materials is calculated. As a result, based on the Gibbs free energy, it is found that Li2MnO3 should have an ordered structure in TM layer. In comparison, structures with Ni-Mn ratio of 2:1 are predicted to have a disordered TM layer, because the entropy terms have larger impact on the structural ordering than internal energy terms.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0701502).
文摘NiCo-based superalloys exhibit higher strength and creep resistance over conventional superalloys.Compositional effects on elastic properties of the γ and γ' phases in newly-developed NiCo-based superalloys were investigated by first-principles calculation combined with special quasi-random structures.The lattice constant,bulk modulus,and elastic constants vary linearly with the Co concentration in the NiCo solution.In the selected(Ni,Co)3(Al,W)and(Ni,Co)3(Al,Ti)model γ' phase,the lattice constant,and bulk modulus show a linear trend with alloying element concentrations.The addition of Co,Ti,and W can regulate lattice mismatch and increase the bulk modulus,simultaneously.W-addition shows excellent performance in strengthening the elastic properties in the γ' phase.Systems become unstable with higher W and Ni contents,e.g.,(Ni0.75Co0.25)3(Al0.25 W0.75),and become brittle with higher W and Co addition,e.g.,Co3(Al0.25 W0.75).Furthermore,Co,Ti,and W can increase the elastic constants on the whole,and such high elastic constants always correspond to a high elastic modulus.The anisotropy index always corresponds to the nature of Young's modulus in a specific direction.