A 1/3-scale reinfored concrete(RC) frame of unequal storey height with specially shaped columns was tested under low frequency cyclic loading.The damage characteristic,bearing capacity,deformation capacity and ductili...A 1/3-scale reinfored concrete(RC) frame of unequal storey height with specially shaped columns was tested under low frequency cyclic loading.The damage characteristic,bearing capacity,deformation capacity and ductility were analyzed.The restoring force model of the frame was obtained based on the study of the hysteresis curve measured in experiment,and the stiffness degeneration characteristics of every storey of the frame were analyzed.Finally the accumulated damage was analyzed with the damage assessment model.It is shown that the seismic behavior of this frame of unequal storey height with specially shaped columns is generally good,but the bottom of first floor column is a weak part,which should be paid more attention in design,and the restoring force model derived from this experiment can be seen as a valuable guide for design and non-linear finite element analysis for this kind of structure.展开更多
To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial co...To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.展开更多
With the help of Complex Function Mapping studied results, the analysis function of Conformal Mapping is set up. Since the complicated three dimension’s deformation problems are transferred into two dimension problem...With the help of Complex Function Mapping studied results, the analysis function of Conformal Mapping is set up. Since the complicated three dimension’s deformation problems are transferred into two dimension problems, both the stream function and strain ratio field are analyzed in the metal plastic deformation. Using the upper-bound principles, the theory of metal deformation and die cavity optimized modeling is established for random special-shaped product extrusion. As a result, this enables the realization of intelligent technique target in the die cavity of CAD/CAM integration.展开更多
This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine...This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel confi guration, loading angle, axial compressive ratio and shear-span ratio on the behavior(strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coeffi cients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coeffi cients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.展开更多
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design metho...This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.展开更多
Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial ...Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial shear stress transfer behavior on both sides of the specially designed fiber when it is being pulled out; in which automatic analysis of three-dimensional photoelasticity is employed and the finite element method is adopted. The results show that the stress transfer occurs mainly in the region near the fiber's embedded end where the stress reaches its critical point, leading to debonding of the interface. Before debonding, as the pullout loading increases, the peak value of shear stress transfers along the fiber from the embedded end to the interior of the matrix, and then stops at the hooked part of the fiber because of its impediment. When the interface begins to debond as the load increases, the shear stress can be transferred to the hooked part.展开更多
A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of f...A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of freedom and the additional sixth is associated with the in-plane shell rotation. The displacement fields of the element satisfy the exact requirement of rigid body modes of motion. The element is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element developed herein is first validated by applying it to the analysis of a benchmark problem involving a standard spherical shell with simply supported edges. The results of the analysis showed that reasonably accurate results were obtained even when modeling the shells using fewer elements compared to other shell element types. The element is then used in a finite element model to analyze polygon shaped spherical roof structures. The distribution of the various components of deflection and stress is obtained. Furthermore, the effect of introducing circular arched beams as stiffeners spanning the two diagonally opposite end comers is investigated. It is found that the stiffeners reduced the deflections and the stresses in the roof structure by considerable value.展开更多
Aimed at the modeling issues in design and quick processing of extruding die for special-shaped products, with the help of Conformal Mapping theory, Conformal Mapping function is determined by the given method of nume...Aimed at the modeling issues in design and quick processing of extruding die for special-shaped products, with the help of Conformal Mapping theory, Conformal Mapping function is determined by the given method of numerical trigonometric interpolation. Three-dimensional forming problems are transformed into two-dimensional problems, and mathematical model of die cavity surface is established based on different kinds of vertical curve, as well as the mathematical model of plastic flow in extruding deformation of special-shaped products gets completed. By upper bound method, both vertical curves of die cavity and its parameters are optimized. Combining the optimized model with the latest NC technology, NC Program of die cavity and its CAM can be realized. Taking the similar extrusion of square-shaped products with arc radius as instance, both metal plastic similar extrusion and die cavity optimization are carried out.展开更多
Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack...Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.展开更多
In order to present basic guidance for system calibration of split Hopkinson pressure bar(SHPB) with the special shape striker,wave characteristics and dynamic responses of SHPB under striker impact were analyzed.Stre...In order to present basic guidance for system calibration of split Hopkinson pressure bar(SHPB) with the special shape striker,wave characteristics and dynamic responses of SHPB under striker impact were analyzed.Stress generated by the special shape striker tends to have a half-sine waveform and has little wave dispersion during its propagation.Impact velocities of the special shape striker and peak values of generated stress still have linear relation but with a different coefficient from that of cylindrical strikers.From stress histories on the surfaces of the input bar impacted by the special shape striker off-axially and obliquely,it is found that the misalignment impacts usually trigger wave distortion and amplitude decrease,which can be used to identify the poor system adjustment.Finally,the system calibration of SHPB with the special shape striker can be classified into four steps:system adjustment,wave distortion identification,measurement calibration and transmission calibration,where the measurement calibration factor and transmission calibration factor are elaborated and redefined.展开更多
In objection to one of Yuri Balashov's defenses of perdurantism, Matthew Davidson claims that, according to the special theory of relativity, both 3-dimensional and 4-dimensional shapes are nonintrinsic, i.e., they a...In objection to one of Yuri Balashov's defenses of perdurantism, Matthew Davidson claims that, according to the special theory of relativity, both 3-dimensional and 4-dimensional shapes are nonintrinsic, i.e., they are relative to reference frames. The author argues that 3-dimensional and 4-dimensional spatial shapes are indeed nonintrinsic, but shapes in 3-dimensional and 4-dimensional spacetime are intrinsic according to the special theory of relativity. This follows from the special relativity theory's claim that spacetime intervals or distances in any n-dimensional spacetime are invariant, unlike spatial distances.展开更多
基金Project(50878141) supported by the National Natural Science Foundation of ChinaProject(Z2010250) supported by the Natural Science Foundation of Education Department of Hebei Province,China
文摘A 1/3-scale reinfored concrete(RC) frame of unequal storey height with specially shaped columns was tested under low frequency cyclic loading.The damage characteristic,bearing capacity,deformation capacity and ductility were analyzed.The restoring force model of the frame was obtained based on the study of the hysteresis curve measured in experiment,and the stiffness degeneration characteristics of every storey of the frame were analyzed.Finally the accumulated damage was analyzed with the damage assessment model.It is shown that the seismic behavior of this frame of unequal storey height with specially shaped columns is generally good,but the bottom of first floor column is a weak part,which should be paid more attention in design,and the restoring force model derived from this experiment can be seen as a valuable guide for design and non-linear finite element analysis for this kind of structure.
基金Supported by National Natural Science Foundation of China (No. 50878141)Hebei Natural Science Foundation,China (No. E2011202013)High School of Hebei Science and Technology Research Youth Foundation,China(No. Q2012083)
文摘To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.
文摘With the help of Complex Function Mapping studied results, the analysis function of Conformal Mapping is set up. Since the complicated three dimension’s deformation problems are transferred into two dimension problems, both the stream function and strain ratio field are analyzed in the metal plastic deformation. Using the upper-bound principles, the theory of metal deformation and die cavity optimized modeling is established for random special-shaped product extrusion. As a result, this enables the realization of intelligent technique target in the die cavity of CAD/CAM integration.
基金National Science Foundation of China under Grant Nos.50908057 and 51268004Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety under Grant No.2012ZDX10Innovation Project of Guangxi Graduate Education under Grant No.YCBZ2012005
文摘This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel confi guration, loading angle, axial compressive ratio and shear-span ratio on the behavior(strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coeffi cients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coeffi cients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.
基金International Science&Technology Cooperation Program of China under Grant No.2014DFA70950Tsinghua University Initiative Scientific Research Program under Grant No.2012THZ02-1National Natural Science Foundation of China under Grant No.91315301
文摘This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements ofT-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.
基金supported by the National Natural Science Foundation of China(10662005)
文摘Specially designed fibers are widely used in engineering practice because the specially-designed shape can help to improve the bonding strength of the fiber and the interface. Studied in this paper is the interfacial shear stress transfer behavior on both sides of the specially designed fiber when it is being pulled out; in which automatic analysis of three-dimensional photoelasticity is employed and the finite element method is adopted. The results show that the stress transfer occurs mainly in the region near the fiber's embedded end where the stress reaches its critical point, leading to debonding of the interface. Before debonding, as the pullout loading increases, the peak value of shear stress transfers along the fiber from the embedded end to the interior of the matrix, and then stops at the hooked part of the fiber because of its impediment. When the interface begins to debond as the load increases, the shear stress can be transferred to the hooked part.
文摘A new spherical triangular finite element based on shallow shell formulation is developed in this paper. The element has six degrees of freedom at each comer node, five of which are the essential external degrees of freedom and the additional sixth is associated with the in-plane shell rotation. The displacement fields of the element satisfy the exact requirement of rigid body modes of motion. The element is based on independent strain assumption insofar as it is allowed by the compatibility equations. The element developed herein is first validated by applying it to the analysis of a benchmark problem involving a standard spherical shell with simply supported edges. The results of the analysis showed that reasonably accurate results were obtained even when modeling the shells using fewer elements compared to other shell element types. The element is then used in a finite element model to analyze polygon shaped spherical roof structures. The distribution of the various components of deflection and stress is obtained. Furthermore, the effect of introducing circular arched beams as stiffeners spanning the two diagonally opposite end comers is investigated. It is found that the stiffeners reduced the deflections and the stresses in the roof structure by considerable value.
文摘Aimed at the modeling issues in design and quick processing of extruding die for special-shaped products, with the help of Conformal Mapping theory, Conformal Mapping function is determined by the given method of numerical trigonometric interpolation. Three-dimensional forming problems are transformed into two-dimensional problems, and mathematical model of die cavity surface is established based on different kinds of vertical curve, as well as the mathematical model of plastic flow in extruding deformation of special-shaped products gets completed. By upper bound method, both vertical curves of die cavity and its parameters are optimized. Combining the optimized model with the latest NC technology, NC Program of die cavity and its CAM can be realized. Taking the similar extrusion of square-shaped products with arc radius as instance, both metal plastic similar extrusion and die cavity optimization are carried out.
文摘Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.
基金Projects(50904079,50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China
文摘In order to present basic guidance for system calibration of split Hopkinson pressure bar(SHPB) with the special shape striker,wave characteristics and dynamic responses of SHPB under striker impact were analyzed.Stress generated by the special shape striker tends to have a half-sine waveform and has little wave dispersion during its propagation.Impact velocities of the special shape striker and peak values of generated stress still have linear relation but with a different coefficient from that of cylindrical strikers.From stress histories on the surfaces of the input bar impacted by the special shape striker off-axially and obliquely,it is found that the misalignment impacts usually trigger wave distortion and amplitude decrease,which can be used to identify the poor system adjustment.Finally,the system calibration of SHPB with the special shape striker can be classified into four steps:system adjustment,wave distortion identification,measurement calibration and transmission calibration,where the measurement calibration factor and transmission calibration factor are elaborated and redefined.
文摘In objection to one of Yuri Balashov's defenses of perdurantism, Matthew Davidson claims that, according to the special theory of relativity, both 3-dimensional and 4-dimensional shapes are nonintrinsic, i.e., they are relative to reference frames. The author argues that 3-dimensional and 4-dimensional spatial shapes are indeed nonintrinsic, but shapes in 3-dimensional and 4-dimensional spacetime are intrinsic according to the special theory of relativity. This follows from the special relativity theory's claim that spacetime intervals or distances in any n-dimensional spacetime are invariant, unlike spatial distances.