A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate...A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.展开更多
In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has bee...In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.展开更多
介绍了模拟地震反应地面运动的大质量法,并用大质量法和拱脚固定法在有限元软件AN SY S里对一大跨度钢管混凝土(CFST)拱桥(346 m)地震反应进行了分析.通过分析得出两种方法的结果是一致的结论,说明大质量法是大跨度钢管混凝土拱桥地震...介绍了模拟地震反应地面运动的大质量法,并用大质量法和拱脚固定法在有限元软件AN SY S里对一大跨度钢管混凝土(CFST)拱桥(346 m)地震反应进行了分析.通过分析得出两种方法的结果是一致的结论,说明大质量法是大跨度钢管混凝土拱桥地震反应分析的有效方法,也是大跨度结构考虑行波效应和多点激励的地震反应分析的有效方法.展开更多
介绍了模拟地震反应地面运动的大质量法,并用大质量法和拱脚固定法在有限元软件ANSYS里对大跨度钢管混凝土(CFST)拱桥地震反应进行分析:用大质量法对大跨度CFST拱桥进行考虑行波效应的地震反应分析,用拱脚固定法证明该法的准确性,并应...介绍了模拟地震反应地面运动的大质量法,并用大质量法和拱脚固定法在有限元软件ANSYS里对大跨度钢管混凝土(CFST)拱桥地震反应进行分析:用大质量法对大跨度CFST拱桥进行考虑行波效应的地震反应分析,用拱脚固定法证明该法的准确性,并应用到南宁市一座正在施工的跨径为346 m CFST拱桥中.通过分析得出了两种方法的结果是一致的,内力和位移的值相差不到0.2%,考虑行波效应时,相位差为0.6 s到1.5 s时最关键,主要截面内力和位移增大2~3倍,扭矩除L/4截面外均较小.展开更多
文摘A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.
文摘In the past 20 years, great progress has been achieved in China in the construction of concrete-filled steel tube (CFST) arch bridges and concrete arch bridges with a CFST skeleton. The span of these bridges has been increasing rapidly, which is rare in the history of bridge development. The large-scale construction of expressways and high-speed railways demands the development of long-span arch bridges, and advances in design and construction techniques have made it possible to construct such bridges. In the present study, the current status, development, and major innovative technologies of CFST arch bridges and concrete arch bridges with a CFST skeleton in China are elaborated. This paper covers the key con- struction technologies of CFST arch bridges, such as the design, manufacture, and installation of steel tube arch trusses, the preparation and pouring of in-tube concrete, and the construction of the world's longest CFST arch bridge-the First Hejiang Yangtze River Bridge. The main construction technologies of rein- forced concrete arch bridges are also presented, which include cable-stayed fastening-hanging cantilever assembly, adjusting the load by means of stay cables, surrounding the concrete for arch rib pouring, and so forth. In addition, the construction of two CFST skeleton concrete arch bridges-the Guangxi Yongning Yong River Bridge and the Yunnan-Guangxi Railway Nanpan River Bridge--is discussed. CFST arch bridges in China have already gained a world-leading position; with the continuous innovation of key technologies, China will become the new leader in promoting the development of arch bridges.
文摘介绍了模拟地震反应地面运动的大质量法,并用大质量法和拱脚固定法在有限元软件AN SY S里对一大跨度钢管混凝土(CFST)拱桥(346 m)地震反应进行了分析.通过分析得出两种方法的结果是一致的结论,说明大质量法是大跨度钢管混凝土拱桥地震反应分析的有效方法,也是大跨度结构考虑行波效应和多点激励的地震反应分析的有效方法.
文摘介绍了模拟地震反应地面运动的大质量法,并用大质量法和拱脚固定法在有限元软件ANSYS里对大跨度钢管混凝土(CFST)拱桥地震反应进行分析:用大质量法对大跨度CFST拱桥进行考虑行波效应的地震反应分析,用拱脚固定法证明该法的准确性,并应用到南宁市一座正在施工的跨径为346 m CFST拱桥中.通过分析得出了两种方法的结果是一致的,内力和位移的值相差不到0.2%,考虑行波效应时,相位差为0.6 s到1.5 s时最关键,主要截面内力和位移增大2~3倍,扭矩除L/4截面外均较小.