The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ...The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.展开更多
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca...Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.展开更多
With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and ...With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.展开更多
A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, consider...A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.展开更多
Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack...Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.展开更多
Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from ...Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
随着运行时间的增长,光伏连接器会出现氧化、老化、松动等现象,易导致接触不良、发热等问题,最终可能引起断路、电弧等故障,对光伏系统的高效、安全运行造成不良影响。由于光伏连接器故障会引起其等效阻抗的变化,该文采用扩频时域反射法...随着运行时间的增长,光伏连接器会出现氧化、老化、松动等现象,易导致接触不良、发热等问题,最终可能引起断路、电弧等故障,对光伏系统的高效、安全运行造成不良影响。由于光伏连接器故障会引起其等效阻抗的变化,该文采用扩频时域反射法(spread spectrum time domain reflectometry,SSTDR)来进行检测:通过向光伏连接器所在的光伏组件串注入正弦高频信号调制的伪随机序列序列测试信号,分析入射信号与反射信号的相关特性,再与健康状态下的特性进行比较,来实现光伏连接器故障在线诊断。对此进行仿真计算并在4块光伏板组成的光伏组串中进行实验,发现开路故障时包络面积最大可达到5×10^(5),而脱离故障时包络面积最小为0.8×10^(5),二者皆远大于健康时的包络面积0.07×10^(5),可有效诊断光伏连接器是否发生故障。展开更多
基金the National Natural Science Foundation of China(Grant Number 52075553)the Postgraduate Research and Innovation Project of Central South University(School-Enterprise Association)(Grant Number 2021XQLH014).
文摘The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications.
基金supported by the National Natural Science Foundation of China(U23A20336).
文摘Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.
文摘With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.
基金Projects(51278170,U1134207)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.
文摘Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.
文摘Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
文摘随着运行时间的增长,光伏连接器会出现氧化、老化、松动等现象,易导致接触不良、发热等问题,最终可能引起断路、电弧等故障,对光伏系统的高效、安全运行造成不良影响。由于光伏连接器故障会引起其等效阻抗的变化,该文采用扩频时域反射法(spread spectrum time domain reflectometry,SSTDR)来进行检测:通过向光伏连接器所在的光伏组件串注入正弦高频信号调制的伪随机序列序列测试信号,分析入射信号与反射信号的相关特性,再与健康状态下的特性进行比较,来实现光伏连接器故障在线诊断。对此进行仿真计算并在4块光伏板组成的光伏组串中进行实验,发现开路故障时包络面积最大可达到5×10^(5),而脱离故障时包络面积最小为0.8×10^(5),二者皆远大于健康时的包络面积0.07×10^(5),可有效诊断光伏连接器是否发生故障。