As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, consider...A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.展开更多
In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperatur...In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.展开更多
The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and inter...The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor(ECWHQF).The results show that,when there is no ECWHQF,the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning,while when there are different numbers n of ECWHQF coupled to two dissipative cavities,by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities,the EBTVA can be protected perfectly and continuously.Our result provides an effective method for protecting entanglement resources of three-level system.展开更多
A novel multi-cavity Helmholtz muffler is proposed. The multi-cavity Helmholtz muffler is composed of steel structures and silicone membranes. With suitable construction, the Helmholtz muffler can be designed to exhib...A novel multi-cavity Helmholtz muffler is proposed. The multi-cavity Helmholtz muffler is composed of steel structures and silicone membranes. With suitable construction, the Helmholtz muffler can be designed to exhibit negative mass density in low frequency, and the muffling frequency can be adjusted when we change the internal structure of the cavity,which will be very attractive for noise control. In this paper, we investigate the influence of the membranes and the cavities on noise reduction characteristics with theoretical calculations and simulations. The results show that the numbers of membranes and the volumes of the cavities can have a great effect on the position of the muffling frequency. The number of cavities can have a great effect on the width of the muffling frequency(reduce the noise by 10 dB). With different combinations of the membranes and cavities, we can get different muffling frequencies, which can meet different muffling demands in practical applications and is more flexible than the traditional Helmholtz cavity.展开更多
This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he ...This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he Taguchi’s method and the abductive network are used. These methods are appli ed to create an efficient model with functional nodes for the considered problem . Once the cooling system parameters are developed, this network can be used to predict the warp for the die-casting die accurately. A simulated annealing (SA) optimization algorithm with a performance index is then applied to the neur al network for searching the optimal cooling system parameters, and obtain rathe r satisfactory result as compared with the corresponding finite element veri fication.展开更多
Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack...Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.展开更多
Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from ...Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.展开更多
Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process le...Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process lead to complex surface characteristics.In this study,the structural and probabilistic characteristics of the profile grinding of a special-shaped surface were analyzed,and a probabilistic algorithm for the forming and 3D characterization of special-shaped surfaces under profile grinding was developed.The forming process of a GH738 blade tenon tooth surface was considered as an example to demonstrate the algorithm.The comparison results showed that the simulation results had similar surface characteristics to the measurement results,and the relative error range of the 3D roughness parameter was 0.21%–19.76%,indicating an accurate prediction and characterization of the complex special-shaped surface under the action of multiple factors.展开更多
With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal p...With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.展开更多
This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine...This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel confi guration, loading angle, axial compressive ratio and shear-span ratio on the behavior(strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coeffi cients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coeffi cients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.展开更多
Light-emitting diode(LED)-based visible light communication(VLC) has become a potential candidate for nextgeneration ultra-high-speed indoor wireless communication. In this paper, four special-shaped 8-quadrature ampl...Light-emitting diode(LED)-based visible light communication(VLC) has become a potential candidate for nextgeneration ultra-high-speed indoor wireless communication. In this paper, four special-shaped 8-quadrature amplitude modulation(QAM) constellations are investigated in a single-carrier VLC system. It is numerically verified and experimentally demonstrated that circular(7,1) shows obvious superiority in the performance of the dynamic range of signal voltage peak-to-peak(vpp) value and bit error rate(BER). Next best is rectangular, followed by triangular; circular(4,4) has the worst performance. A data rate of 1.515 Gbit/s is successfully achieved by circular(7,1) employing a red chip LED over 0.5 m indoor free space transmission below a BER threshold of3.8 × 10^(-3). Compared with circular(4,4), the traditional 8-QAM constellation, circular(7,1) provides a wider dynamic range of signal vpp, a higher data rate, and a longer transmission distance. To the best of our knowledge,this is the first investigation into the performance differences of special-shaped 8-QAM constellations in a highspeed, single-carrier VLC system, and the results comprehensively demonstrate that circular(7,1) is the optimal option.展开更多
The multi-cavity soft actuator is assembled from single-cavity soft actuator through a reasonable geometric distribution.It has the characteristic that the pneumatic soft actuator is driven by its own deformation and ...The multi-cavity soft actuator is assembled from single-cavity soft actuator through a reasonable geometric distribution.It has the characteristic that the pneumatic soft actuator is driven by its own deformation and has more degrees of freedom.Pneumatic soft actuator is widely used as an emerging discipline and its strong compliance has been greatly developed and applied.However,as the most application potential type of soft actuators,there is still a lack of simple and effective deformation prediction methods for studying the spatial deformation of multi-cavity soft actuators.To solve this problem,a vector equation method is proposed based on the analysis of the principle of the space deformation of the two-cavity,three-cavity and four-cavity soft actuators.Furthermore,a nonlinear mathematical model of the air pressure,space position and deformation trajectory of the soft actuator end is established by combining the vector equation method.Finally,the three-channel soft actuator is verified through experiments.The results show that the mathematical model can better predict the space deformation trajectory of the soft actuator,which provides a new research method for studying the space deformation of the multi-channel soft actuator.展开更多
To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column,mechanical performance of three groups of six RC flame joints with special-shaped(L,T and+)column and disp...To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column,mechanical performance of three groups of six RC flame joints with special-shaped(L,T and+)column and dispersed-steel bars-beam on the top floor under cyclic loads were studied.Experimental comparison was conducted between special-shaped(L,T and+)column and normal beams.The cracking load,yielding load,ultimate bearing capacity,failure patterns,and hysteretic properties at joint core area were investigated.The seismic behaviors of the joints with different proportions of dispersed-steelbar beams were analyzed.The results of experimental analysis indicate that the mechanical and seismic behaviors of frame joints with T-shaped and+-shaped column are nearly not changed when suitable proportion steel bars are dispersed to flange plane.Stiffness degeneration of flame joint with L-shaped column is rather serious due to concrete damage stiffness.Theoretical result indicates that distributing area of the dispersed steel-bar beams in the flange plate should be strictly controlled to avoid anchor destroy.展开更多
China Z15 Tower is a super high-rise building, frame tube composed by the multi-cavity pillars, thestructure is a new member which develops at the form of an ordinary box and concrete column. Four super multi-cavitypi...China Z15 Tower is a super high-rise building, frame tube composed by the multi-cavity pillars, thestructure is a new member which develops at the form of an ordinary box and concrete column. Four super multi-cavitypillars are from the basement through to the top of the structure, thus the precision of frame column is particularlyimportant. In this paper, combination of the analysis and research of super multi-cavity pillars' productiontechnology, focusing on the manufacture technology of two-way tilt tian-glyph giant pillars, to ensure the quality ofconstruction giant column lay a solid foundation.展开更多
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.
基金Projects(51278170,U1134207)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.
文摘In this study, we propose a new temperature compensation control strategy for a multi-cavity hot runner injection molding system, At first, the melt filling time of each cavity can be measured by installing temperature sensors on the position around end filling area, and filling time difference between the various cavities can be calculated. Then the melt temperature of each hot nozzle can be adjusted automatically by a control strategy established based on the Fuzzy Theory and a program compiled with LABVIEW software. Temperature changes the melt mobility, so the adjustment of temperature can equalize the filling time of the melt in each cavity, which can reduced the mass deviation between each cavity and make product properties of each cavity consistent. The conclusion of the experiment is as follows: For this contact lens box of a four-cavity Hot Runner mold, by applying hot runner temperature compensation control system, time difference can be reduced from 0.05 s to 0.01 s at each cavity, and the mass Standard deviation of the four cavity can be improved from 0.006 to 0.002. The ratio of imbalance can be reduced from 20% to 4%. Hence, the hot runner temperature compensation control system has significant feasibility and high potential in improving melt flow balance of multi-cavity molding application.
基金the National Natural Science Foundation of China(Grant Nos.12064012 and 11374096).
文摘The protection of the entanglement between two V-atoms(EBTVA)in a multi-cavity coupling system is studied.The whole system consists of two V-atoms.The two V-atoms are initially in the maximum entangled state and interacts locally with its own dissipative cavity which is coupled to the external cavities with high quality factor(ECWHQF).The results show that,when there is no ECWHQF,the EBTVA can be protected effectively in the case where the V-atom and the dissipative cavity are weak coupled in large detuning,while when there are different numbers n of ECWHQF coupled to two dissipative cavities,by adjusting the parameters of the number n of ECWHQF and the coupling strength k between cavities,the EBTVA can be protected perfectly and continuously.Our result provides an effective method for protecting entanglement resources of three-level system.
基金Project supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX18 0249)
文摘A novel multi-cavity Helmholtz muffler is proposed. The multi-cavity Helmholtz muffler is composed of steel structures and silicone membranes. With suitable construction, the Helmholtz muffler can be designed to exhibit negative mass density in low frequency, and the muffling frequency can be adjusted when we change the internal structure of the cavity,which will be very attractive for noise control. In this paper, we investigate the influence of the membranes and the cavities on noise reduction characteristics with theoretical calculations and simulations. The results show that the numbers of membranes and the volumes of the cavities can have a great effect on the position of the muffling frequency. The number of cavities can have a great effect on the width of the muffling frequency(reduce the noise by 10 dB). With different combinations of the membranes and cavities, we can get different muffling frequencies, which can meet different muffling demands in practical applications and is more flexible than the traditional Helmholtz cavity.
文摘This study is subject to the finite element and abd uc tive network method application in the multi-cavity die. In order to select the optimal cooling system parameters to minimize the warp of a die-casting die, t he Taguchi’s method and the abductive network are used. These methods are appli ed to create an efficient model with functional nodes for the considered problem . Once the cooling system parameters are developed, this network can be used to predict the warp for the die-casting die accurately. A simulated annealing (SA) optimization algorithm with a performance index is then applied to the neur al network for searching the optimal cooling system parameters, and obtain rathe r satisfactory result as compared with the corresponding finite element veri fication.
文摘Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.
文摘Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.
基金sponsored by the National Natural Science Foundation of China(Grant No.51905442)the National Major Science and Technology Projects of China(Grant No.2017-VII-0002-0095).
文摘Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process lead to complex surface characteristics.In this study,the structural and probabilistic characteristics of the profile grinding of a special-shaped surface were analyzed,and a probabilistic algorithm for the forming and 3D characterization of special-shaped surfaces under profile grinding was developed.The forming process of a GH738 blade tenon tooth surface was considered as an example to demonstrate the algorithm.The comparison results showed that the simulation results had similar surface characteristics to the measurement results,and the relative error range of the 3D roughness parameter was 0.21%–19.76%,indicating an accurate prediction and characterization of the complex special-shaped surface under the action of multiple factors.
文摘With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.
基金National Science Foundation of China under Grant Nos.50908057 and 51268004Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety under Grant No.2012ZDX10Innovation Project of Guangxi Graduate Education under Grant No.YCBZ2012005
文摘This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped(SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel confi guration, loading angle, axial compressive ratio and shear-span ratio on the behavior(strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coeffi cients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coeffi cients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.
基金National Natural Science Foundation of China(NSFC)(61571133)National"863"Program of China(2015AA016904)
文摘Light-emitting diode(LED)-based visible light communication(VLC) has become a potential candidate for nextgeneration ultra-high-speed indoor wireless communication. In this paper, four special-shaped 8-quadrature amplitude modulation(QAM) constellations are investigated in a single-carrier VLC system. It is numerically verified and experimentally demonstrated that circular(7,1) shows obvious superiority in the performance of the dynamic range of signal voltage peak-to-peak(vpp) value and bit error rate(BER). Next best is rectangular, followed by triangular; circular(4,4) has the worst performance. A data rate of 1.515 Gbit/s is successfully achieved by circular(7,1) employing a red chip LED over 0.5 m indoor free space transmission below a BER threshold of3.8 × 10^(-3). Compared with circular(4,4), the traditional 8-QAM constellation, circular(7,1) provides a wider dynamic range of signal vpp, a higher data rate, and a longer transmission distance. To the best of our knowledge,this is the first investigation into the performance differences of special-shaped 8-QAM constellations in a highspeed, single-carrier VLC system, and the results comprehensively demonstrate that circular(7,1) is the optimal option.
基金the National Natural Science Foundation of China(No.11604205)。
文摘The multi-cavity soft actuator is assembled from single-cavity soft actuator through a reasonable geometric distribution.It has the characteristic that the pneumatic soft actuator is driven by its own deformation and has more degrees of freedom.Pneumatic soft actuator is widely used as an emerging discipline and its strong compliance has been greatly developed and applied.However,as the most application potential type of soft actuators,there is still a lack of simple and effective deformation prediction methods for studying the spatial deformation of multi-cavity soft actuators.To solve this problem,a vector equation method is proposed based on the analysis of the principle of the space deformation of the two-cavity,three-cavity and four-cavity soft actuators.Furthermore,a nonlinear mathematical model of the air pressure,space position and deformation trajectory of the soft actuator end is established by combining the vector equation method.Finally,the three-channel soft actuator is verified through experiments.The results show that the mathematical model can better predict the space deformation trajectory of the soft actuator,which provides a new research method for studying the space deformation of the multi-channel soft actuator.
基金This work was partly financial supported by the National Natural Science Foundation of China(Grant No.50678016).
文摘To overcome the problem that steel bars are put too close at a flame joint with special-shaped beam and column,mechanical performance of three groups of six RC flame joints with special-shaped(L,T and+)column and dispersed-steel bars-beam on the top floor under cyclic loads were studied.Experimental comparison was conducted between special-shaped(L,T and+)column and normal beams.The cracking load,yielding load,ultimate bearing capacity,failure patterns,and hysteretic properties at joint core area were investigated.The seismic behaviors of the joints with different proportions of dispersed-steelbar beams were analyzed.The results of experimental analysis indicate that the mechanical and seismic behaviors of frame joints with T-shaped and+-shaped column are nearly not changed when suitable proportion steel bars are dispersed to flange plane.Stiffness degeneration of flame joint with L-shaped column is rather serious due to concrete damage stiffness.Theoretical result indicates that distributing area of the dispersed steel-bar beams in the flange plate should be strictly controlled to avoid anchor destroy.
文摘China Z15 Tower is a super high-rise building, frame tube composed by the multi-cavity pillars, thestructure is a new member which develops at the form of an ordinary box and concrete column. Four super multi-cavitypillars are from the basement through to the top of the structure, thus the precision of frame column is particularlyimportant. In this paper, combination of the analysis and research of super multi-cavity pillars' productiontechnology, focusing on the manufacture technology of two-way tilt tian-glyph giant pillars, to ensure the quality ofconstruction giant column lay a solid foundation.