Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, consider...A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.展开更多
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the ...Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.展开更多
Conventional reinforced concrete piers are vulnerable to severe compressive damage under strong earthquake conditions and are difficult to quickly rehabilitate.This paper develops a new type of composite pier,consisti...Conventional reinforced concrete piers are vulnerable to severe compressive damage under strong earthquake conditions and are difficult to quickly rehabilitate.This paper develops a new type of composite pier,consisting of ultra-high-performance concrete(UHPC)and reinforced concrete(RC).This UHPC-RC composite pier uses a UHPC cover outside of an RC core to achieve a high load-carrying capacity and mitigate compressive damage.An experiment is performed to evaluate the performance of the UHPC-RC composite pier under cyclic deformation.The crack development,ultimate failure modes,and load-carrying capacities of the pier are observed.Because of the extraordinary compressive strength of UHPC,the composite pier suffers little compressive damage under large lateral deformations.The composite pier fails as a result of fracturing of the reinforcement.A numerical model is developed to reproduce the cyclic behavior of the composite pier.On the basis of the verified numerical model,a parametric analysis is used to investigate the influence of the thickness of the UHPC cover and the axial load ratio.Finally,an approach is recommended for designing composite piers.展开更多
The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of sev...The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.展开更多
Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack...Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.展开更多
Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from ...Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.展开更多
The deterioration of the performance of offshore bridges is particularly prominent due to the complex natural environment,including the coupling effects of earthquake and seawater erosion.In particular,bridge piers ar...The deterioration of the performance of offshore bridges is particularly prominent due to the complex natural environment,including the coupling effects of earthquake and seawater erosion.In particular,bridge piers are the main energy-consuming and load-bearing components,so that excellent seismic capacity of bridge piers is the key to avoiding bridge damage.Although earthquake resistant behavior of ordinary reinforced concrete bridge piers(ordinary pier)can be improved by increasing the section size and reinforcement ratio of piers,the improvement of the earthquake resistant behavior is limited.To further improve the earthquake resistant behavior of bridge piers,high-tensile reinforcement engineered cementitious composite(ECC)bridge piers are utilized and time-varying seismic fragility analysis are conducted in this study.The refined model of a bridge pier is built by OpenSees.First,the influence of ECC replacement height on pier curvature is analyzed to determine the reasonable ECC height.Then,the time-varying fragility analysis of high-tensile reinforcement ECC piers(ECC composite piers)with durability damage are evaluated considering the time-varying law of materials.Four damage states,slight damage,moderate damage,extensive damage and complete collapse,are utilized in the study.These fragility curves indicate the durability damage can debase the earthquake resistant behavior of piers continually,the exceedance probability of the same state of destruction increases with the increase of peak ground acceleration(PGA)and service time of pier.The results also indicate that the corrosion level of chloride ion to pier is small during the early service period,and the bridge pier vulnerable curve is similar to that of the new bridge pier.As the level of chlorine ion corrosion deepens,transcendental probability is increased.Compared with the ordinary pier,the exceedance probability in each limit state of ECC composite piers is significantly reduced.The proposed ECC composite pies leads to better realistic time-varying earthquake resistant behavior.展开更多
Various regions are becoming increasingly vulnerable to the increased frequency of floods due to the recent changes in climate and precipitation patterns throughout the world.As a result,specific infrastructures,notab...Various regions are becoming increasingly vulnerable to the increased frequency of floods due to the recent changes in climate and precipitation patterns throughout the world.As a result,specific infrastructures,notably bridges,would experience significant flooding for which they were not intended and would be submerged.The flow field and shear stress distribution around tandem bridge piers under pressurized flow conditions for various bridge deck widths are examined using a series of three-dimensional(3D)simulations.It is indicated that scenarios with a deck width to pier diameter(Ld/p)ratio of 3 experience the highest levels of turbulent disturbance.In addition,maximum velocity and shear stresses occur in cases with Ld/p equal to 6.Results indicate that increasing the number of piers from 1 to 2 and 3 results in the increase of bed shear stress by 24%and 20%respectively.Finally,five machine learning algorithms,including Decision Trees(DT),Feed Forward Neural Networks(FFNN),and three Ensemble models,are implemented to estimate the flow field and the turbulent structure.Results indicated that the highest accuracy for estimation of U,and W,were obtained using AdaBoost ensemble with R2=0.946 and 0.951,respectively.Besides,the Random Forest algorithm outperformed AdaBoost slightly in the estimation of V and turbulent kinetic energy(TKE)with R2=0.894 and 0.951,respectively.展开更多
Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pi...Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.展开更多
A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes...A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.展开更多
The objective of this paper is to propose and illustrate feasibility, approach, validation as per prevailing codes and design standards, specification to rehabilitate bridge pier cap by using Ultra-High Performance Co...The objective of this paper is to propose and illustrate feasibility, approach, validation as per prevailing codes and design standards, specification to rehabilitate bridge pier cap by using Ultra-High Performance Concrete (UHPC). The evaluation of existing pier caps and bearings indicates that the complete removal of existing bearing is undesirable due to 1) massive size of bearing 2) difficulty in cutting through the thick components of existing bearing 3) deeply anchored lower shoe of existing bearings 4) huge cost and time required to erect temporary support system for superstructure to facilitate the construction of new piers. To overcome these difficulties, UHPC could be cast around the lower shoe up to the existing bearing pin. This UHPC cast could be used to support jacks and temporary bearings. The new low height permanent bearing could then be installed after removing the upper shoe of the existing bearing. In the present research, first properties of UHPC are summarized followed by evaluation of case studies to check feasibility of the solution to rehabilitate pier cap by using UHPC. The complex load paths in pier cap are idealized by using validated strut and tie model as per prevailing AASHTO LRFD Bridge Design Specification.展开更多
Hidden by several layers of white paint,the almost forgotten polychromy of Nervi’s exhibition halls emerges from historical images,not necessarily intended to document the complex,but rather as a setting for exhibiti...Hidden by several layers of white paint,the almost forgotten polychromy of Nervi’s exhibition halls emerges from historical images,not necessarily intended to document the complex,but rather as a setting for exhibitions,fairs or film and advertising sets.Historical documentation reveals Nervi’s presence on the building site and his desire to supervise the finishing phases.The first stratigraphic investigations also testify to his attention color,as well as the subsequent transformations of use.Specific theoretical and technical issues regarding the conservation of the pictorial layers in relation to the conservation of the reinforced concrete elements are outlined.Furthermore,the use of polychromy in combination with the original employment of natural and artificial light sources introduces new facets into the analysis of Nervi’s work,offering the opportunity for original reflection.This is particularly true if we consider the impact of the interventions carried out so far,even those considered non-invasive,such as routine maintenance operations and some technological upgrades.展开更多
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金Projects(51278170,U1134207)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.
文摘Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment.
基金National Natural Science Foundation of China under Grant Nos.U21A20154 and 52078436the Sichuan Science and Technology Program under Grant Nos.2022JDRC0012,2023YFG0064 and 2023YFS0429the Opening Funding Project of the Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of the China Earthquake Administration。
文摘Conventional reinforced concrete piers are vulnerable to severe compressive damage under strong earthquake conditions and are difficult to quickly rehabilitate.This paper develops a new type of composite pier,consisting of ultra-high-performance concrete(UHPC)and reinforced concrete(RC).This UHPC-RC composite pier uses a UHPC cover outside of an RC core to achieve a high load-carrying capacity and mitigate compressive damage.An experiment is performed to evaluate the performance of the UHPC-RC composite pier under cyclic deformation.The crack development,ultimate failure modes,and load-carrying capacities of the pier are observed.Because of the extraordinary compressive strength of UHPC,the composite pier suffers little compressive damage under large lateral deformations.The composite pier fails as a result of fracturing of the reinforcement.A numerical model is developed to reproduce the cyclic behavior of the composite pier.On the basis of the verified numerical model,a parametric analysis is used to investigate the influence of the thickness of the UHPC cover and the axial load ratio.Finally,an approach is recommended for designing composite piers.
文摘The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.
文摘Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.
文摘Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.
基金National Natural Science Foundation of China under Grant No.51608488Scientific and Technological Project of Henan Province,China under Grant No.222102320006+1 种基金Zhengzhou University 2022 Annual Basic Research Foundation for Young Teachers,China under Grant No.JC22547025Postdoctoral Research Grant in Henan Province。
文摘The deterioration of the performance of offshore bridges is particularly prominent due to the complex natural environment,including the coupling effects of earthquake and seawater erosion.In particular,bridge piers are the main energy-consuming and load-bearing components,so that excellent seismic capacity of bridge piers is the key to avoiding bridge damage.Although earthquake resistant behavior of ordinary reinforced concrete bridge piers(ordinary pier)can be improved by increasing the section size and reinforcement ratio of piers,the improvement of the earthquake resistant behavior is limited.To further improve the earthquake resistant behavior of bridge piers,high-tensile reinforcement engineered cementitious composite(ECC)bridge piers are utilized and time-varying seismic fragility analysis are conducted in this study.The refined model of a bridge pier is built by OpenSees.First,the influence of ECC replacement height on pier curvature is analyzed to determine the reasonable ECC height.Then,the time-varying fragility analysis of high-tensile reinforcement ECC piers(ECC composite piers)with durability damage are evaluated considering the time-varying law of materials.Four damage states,slight damage,moderate damage,extensive damage and complete collapse,are utilized in the study.These fragility curves indicate the durability damage can debase the earthquake resistant behavior of piers continually,the exceedance probability of the same state of destruction increases with the increase of peak ground acceleration(PGA)and service time of pier.The results also indicate that the corrosion level of chloride ion to pier is small during the early service period,and the bridge pier vulnerable curve is similar to that of the new bridge pier.As the level of chlorine ion corrosion deepens,transcendental probability is increased.Compared with the ordinary pier,the exceedance probability in each limit state of ECC composite piers is significantly reduced.The proposed ECC composite pies leads to better realistic time-varying earthquake resistant behavior.
基金supported by the National Natural Science Foundation of China (Grant Nos.52179060 and 51909024).
文摘Various regions are becoming increasingly vulnerable to the increased frequency of floods due to the recent changes in climate and precipitation patterns throughout the world.As a result,specific infrastructures,notably bridges,would experience significant flooding for which they were not intended and would be submerged.The flow field and shear stress distribution around tandem bridge piers under pressurized flow conditions for various bridge deck widths are examined using a series of three-dimensional(3D)simulations.It is indicated that scenarios with a deck width to pier diameter(Ld/p)ratio of 3 experience the highest levels of turbulent disturbance.In addition,maximum velocity and shear stresses occur in cases with Ld/p equal to 6.Results indicate that increasing the number of piers from 1 to 2 and 3 results in the increase of bed shear stress by 24%and 20%respectively.Finally,five machine learning algorithms,including Decision Trees(DT),Feed Forward Neural Networks(FFNN),and three Ensemble models,are implemented to estimate the flow field and the turbulent structure.Results indicated that the highest accuracy for estimation of U,and W,were obtained using AdaBoost ensemble with R2=0.946 and 0.951,respectively.Besides,the Random Forest algorithm outperformed AdaBoost slightly in the estimation of V and turbulent kinetic energy(TKE)with R2=0.894 and 0.951,respectively.
基金National Natural Science Foundation of China under Grant Nos.51978656 and 51478459the Key Research and Development Project of Xuzhou under Grant No.KC22282the Open Fund of Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Civil Engineering,China University of Mining and Technology under Grant No.KFJJ202004。
文摘Considering the desirable behavior of concrete filled steel tube(CFT)columns and the complicated behavior of segmental double-column piers under cyclic loads,three post-tensioned precast segmental CFT double-column pier specimens were tested to extend their application in moderate and high seismicity areas.The effects of the number of CFT segments and the steel endplates as energy dissipaters on the seismic behavior of the piers were evaluated.The experimental results show that the segmental piers exhibited stable hysteretic behavior with small residual displacements under cyclic loads.All the tested specimens achieved a drift ratio no less than 13%without significant damage and strength deterioration due to the desirable behavior of CFT columns.Since the deformation of segmental columns was mainly concentrated at the column-footing interfaces,the increase of the segment numbers for each column had no obvious effects on the loading capacity but reduced the initial stiffness of the specimens.The use of steel endplates improved the bearing capacity,stiffness and energy dissipation of segmental piers,but weakened their self-centering capacity.Fiber models were also proposed to simulate the hysteretic behavior of the tested specimens,and the influences of segment numbers and prestress levels on seismic behavior were further studied.
文摘A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.
文摘The objective of this paper is to propose and illustrate feasibility, approach, validation as per prevailing codes and design standards, specification to rehabilitate bridge pier cap by using Ultra-High Performance Concrete (UHPC). The evaluation of existing pier caps and bearings indicates that the complete removal of existing bearing is undesirable due to 1) massive size of bearing 2) difficulty in cutting through the thick components of existing bearing 3) deeply anchored lower shoe of existing bearings 4) huge cost and time required to erect temporary support system for superstructure to facilitate the construction of new piers. To overcome these difficulties, UHPC could be cast around the lower shoe up to the existing bearing pin. This UHPC cast could be used to support jacks and temporary bearings. The new low height permanent bearing could then be installed after removing the upper shoe of the existing bearing. In the present research, first properties of UHPC are summarized followed by evaluation of case studies to check feasibility of the solution to rehabilitate pier cap by using UHPC. The complex load paths in pier cap are idealized by using validated strut and tie model as per prevailing AASHTO LRFD Bridge Design Specification.
文摘Hidden by several layers of white paint,the almost forgotten polychromy of Nervi’s exhibition halls emerges from historical images,not necessarily intended to document the complex,but rather as a setting for exhibitions,fairs or film and advertising sets.Historical documentation reveals Nervi’s presence on the building site and his desire to supervise the finishing phases.The first stratigraphic investigations also testify to his attention color,as well as the subsequent transformations of use.Specific theoretical and technical issues regarding the conservation of the pictorial layers in relation to the conservation of the reinforced concrete elements are outlined.Furthermore,the use of polychromy in combination with the original employment of natural and artificial light sources introduces new facets into the analysis of Nervi’s work,offering the opportunity for original reflection.This is particularly true if we consider the impact of the interventions carried out so far,even those considered non-invasive,such as routine maintenance operations and some technological upgrades.