Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier ...Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate.展开更多
Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is...Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is a major problem in this part of the world. This non-union is a major treatment challenge with increased cost of care and morbidity in this part of the world. Humeral shaft non-union can be treated with locked intra-medullary nailing (LIMN) or dynamic compression plating (DCP). Study on comparison of these methods of fixation in this part of the world is scarce in literature search, hence the reason for this study. Objective: The objectives of this study are: (1) to compare early clinical outcome following fixation of humeral shaft fracture nonunion with DCP versus LIMN;(2) to compare the time of radiologic fracture union of DCP with LIMN;(3) to compare complications following fixation of humeral shaft fracture nonunion with DCP versus LIMN. Patients and Methods: This was a randomized control study done for 2 years in which fifty adult patients with humeral shaft non-union were recruited. The patients were grouped into 2 (P = DCP & N = LIMN). Forty five of the patients completed the follow up periods of the study and then analyzed. The P group had ORIF with DCP while the N group had ORIF with LIMN. Both groups had grafting with cancellous bones. Each patient was followed up for a period of 6 months at the time which radiographic union is expected. Any patient without clinical and/or radiographic evidence of union after six months of surgery was diagnosed as having recurrent non-union. The data generated was analyzed using SPSS Version 23. The results were presented in charts and tables. The paired t-test was used while considering p value Result: Forty five patients completed follow up. There was a male preponderance (4:1), right humerus predominated (3:2). Motor vehicular accidents were the commonest cause of the fractures (62%). Most non-union fractures occurred at the level of the middle 3<sup>rd</sup> of the humeral shaft (60%). Failed TBS treatment was the commonest indication for the osteosynthesis (71%). More patients had plating (53%) compared to 47% who had LIMN. Most patients (93.4%) had union between 3 to 6 months irrespective of fixation type with no significant statistical difference between the union rate of DCP and LIMN (p value 0.06) with similar functional outcome and complication rates irrespective of the type of fixation. Conclusion: This study showed that the success rates in term of fracture union, outcome functional grades and complication rates were not directly dependent on the types of the fixation: plating or locked intra-medullary nailing.展开更多
BACKGROUND Whether operation is superior to non-operation for humeral shaft fracture remains debatable.We hypothesized that operation could decrease the nonunion and reintervention rates and increase the functional ou...BACKGROUND Whether operation is superior to non-operation for humeral shaft fracture remains debatable.We hypothesized that operation could decrease the nonunion and reintervention rates and increase the functional outcomes.AIM To compare the clinical efficacy between operative and nonoperative approaches for humeral shaft fractures.METHODS We searched the PubMed,Web of Science,ScienceDirect,and Cochrane databases from 1990 to December 2023 for clinical trials and cohort studies comparing the effects of operative and conservative methods on humeral shaft fractures.Two investigators independently extracted data from the eligible studies,and the other two assessed the methodological quality of each study.The quality of the included studies was assessed using the Cochrane risk bias or Newcastle-Ottawa Scale.The nonunion,reintervention and the overall complications and functional scores were pooled and analyzed using Review Manager software(version 5.3).RESULTS A total of four randomized control trials and 13 cohort studies were included,with 1285 and 1346 patients in the operative and nonoperative groups,respectively.Patients in the operative group were treated with a plate or nail,whereas those in the conservative group were managed with splint or functional bracing.Four studies were assessed as having a high risk of bias,and the other 13 were of a low risk of bias according to the Newcastle-Ottawa Scale or Cochrane risk bias tool.The operative group had a significantly decreased rate of nonunion[odds ratio(OR)0.30;95%CI:0.23 to 0.40,reintervention(OR:0.33;95%CI:0.24 to 0.47),and overall complications(OR:0.62;95%CI:0.49 to 0.78)].The pooled effect of the Disabilities of Arm,Shoulder,and Hand score showed a significant difference at 3[mean difference(MD)-8.26;95%CI:-13.60 to-2.92],6(MD:-6.72;95%CI:-11.34 to-2.10),and 12 months(MD:-2.55;95%CI:-4.36 to-0.74).The pooled effect of Visual Analog Scale scores and the Constant-Murley score did not significantly differ between the two groups.CONCLUSION This systematic review and meta-analysis revealed a trend of rapid functional recovery and decreased rates of nonunion and reintervention after operation for humeral shaft fracture compared to conservative treatment.展开更多
Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current rev...Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current review aims to compare the outcomes of adult tibia fractures treated with solid nails to those treated with hollow nails. Methods: A search on Scopus, PubMed, and Cochrane Library, using three keywords (Outcome, Tibia shaft fractures, Nail) was conducted in April 2023. Results were compiled and two independent reviewers screened and selected eligible articles After removing duplicates, titles and abstracts were read to exclude ineligible studies. Full-text articles of the remaining papers were read to select eligible studies which were further critically appraised to ascertain their methodological quality. The data extracted from the selected papers were synthesized using a combination of pooling of results, tests of statistical difference (t-test and chi-square) and narrative synthesis methods. Results: A total of 2295 articles were obtained from the databases and citation searching. A total of 9 papers were identified as eligible and included in the review. Findings revealed that there is no statistical difference in the outcomes of tibia fractures treated with either solid or hollow nail groups such as duration of surgery (p = 0.541), rate of delayed and non-union (p = 0.342), and rate of surgical site infections (p = 0.395). Conclusion: Intramedullary nailing of tibia shaft fractures with either solid or hollow nails have similar functional outcomes.展开更多
A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, consider...A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.展开更多
This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheologi...This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers.展开更多
The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause...The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.展开更多
Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack...Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.展开更多
Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from ...Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.展开更多
Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applicatio...Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applications.Dynamic modelling of these shafts is generally carried out using Equivalent Modulus Beam Theory(EMBT)and Layerwise Beam Theory(LBT)formulations.The EMBT formulation is modified by considering stacking sequence,shear normal coupling,bending twisting coupling and bending stretching coupling.It is observed that modified EMBT formulation is underestimating the shafts stiffness at lower length/mean diameter(l/dm)ratios.In the present work,a new formulation is developed by adding shear deformation along the thickness direction to the existing modified EMBT formulation.The variation of shear deformation along the thickness direction is found using different shear deformation theories,i.e.,first-order shear deformation theory(FSDBT),parabolic shear deformation theory(PSDBT),trigonometric shear deformation theory(TSDBT),and hyperbolic shear deformation theory(HSDBT).The analysis is performed at l/d_(m) ratios of 5,10,15,20,25,30,35,and 40 for carbon/epoxy composites,E-glass/epoxy composites,and boron/epoxy composite shafts.The results show that new formulation has improved the bending natural frequency of the composite shafts for l/d_(m)<15 in comparison with modified EMBT.The effect of new formulation is more significant for the second and third bending modes of natural frequencies.展开更多
With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic ...With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise.展开更多
Radial head dislocation associated with an ipsilateral radial shaft fracture is a rare lesion, even more so for open lesions. Few cases have been found in the literature. We report this case due to its exceptional nat...Radial head dislocation associated with an ipsilateral radial shaft fracture is a rare lesion, even more so for open lesions. Few cases have been found in the literature. We report this case due to its exceptional nature and discuss the mechanism of onset. A twenty-five-year-old patient presented with a dislocation of the radial head associated with a GUSTILO ANDERSON type II open fracture of the radial shaft following an occupational accident. He was managed twenty-four hours after the trauma. The mechanism was a direct blow. The dislocation was reduced by external manoeuvre following open reduction of the radial shaft. The fracture was stabilized by two Kirschner wires following reduction. The result at 12 months was satisfactory from a clinical and radiological standpoint.展开更多
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
基金supported by the National Natural Science Foundation of China(22078030,52021004)Natural Science Foundation of Chongqing(2022NSCO-LZX0014)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-005,2023CDJXY-047)National Key Research and Development Project(2022YFC3901204)。
文摘Efficiently modulating the velocity distribution and flow pattern of non-Newtonian fluids is a critical challenge in the context of dual shaft eccentric mixers for process intensification,posing a significant barrier for the existing technologies.Accordingly,this work reports a convenient strategy that changes the kinetic energy to controllably regulate the flow patterns from radial flow to axial flow.Results showed that the desired velocity distribution and flow patterns could be effectively obtained by varying the number and structure of baffles to change kinetic energy,and a more uniform velocity distribution,which could not be reached normally in standard baffle dual shaft mixers,was easily obtained.Furthermore,a comparative analysis of velocity and shear rate distributions is employed to elucidate the mechanism behind the generation of flow patterns in various dual-shaft eccentric mixers.Importantly,there is little difference in the power number of the laminar flow at the same Reynolds number,meaning that the baffle type has no effect on the power consumption,while the power number of both unbaffle and U-shaped baffle mixing systems decreases compared with the standard baffle mixing system in the transition flow.Finally,at the same rotational condition,the dimensionless mixing time of the U-shaped baffle mixing system is 15.3%and 7.9%shorter than that of the standard baffle and the unbaffle mixing system,respectively,which shows the advantage of the U-shaped baffle in stirring rate.
文摘Background: Fractures of humeral shaft in adults are common injuries. Humeral shafts non-union either from late presentation after initial treatment by traditional bone setters or failed non-operative orthodox care is a major problem in this part of the world. This non-union is a major treatment challenge with increased cost of care and morbidity in this part of the world. Humeral shaft non-union can be treated with locked intra-medullary nailing (LIMN) or dynamic compression plating (DCP). Study on comparison of these methods of fixation in this part of the world is scarce in literature search, hence the reason for this study. Objective: The objectives of this study are: (1) to compare early clinical outcome following fixation of humeral shaft fracture nonunion with DCP versus LIMN;(2) to compare the time of radiologic fracture union of DCP with LIMN;(3) to compare complications following fixation of humeral shaft fracture nonunion with DCP versus LIMN. Patients and Methods: This was a randomized control study done for 2 years in which fifty adult patients with humeral shaft non-union were recruited. The patients were grouped into 2 (P = DCP & N = LIMN). Forty five of the patients completed the follow up periods of the study and then analyzed. The P group had ORIF with DCP while the N group had ORIF with LIMN. Both groups had grafting with cancellous bones. Each patient was followed up for a period of 6 months at the time which radiographic union is expected. Any patient without clinical and/or radiographic evidence of union after six months of surgery was diagnosed as having recurrent non-union. The data generated was analyzed using SPSS Version 23. The results were presented in charts and tables. The paired t-test was used while considering p value Result: Forty five patients completed follow up. There was a male preponderance (4:1), right humerus predominated (3:2). Motor vehicular accidents were the commonest cause of the fractures (62%). Most non-union fractures occurred at the level of the middle 3<sup>rd</sup> of the humeral shaft (60%). Failed TBS treatment was the commonest indication for the osteosynthesis (71%). More patients had plating (53%) compared to 47% who had LIMN. Most patients (93.4%) had union between 3 to 6 months irrespective of fixation type with no significant statistical difference between the union rate of DCP and LIMN (p value 0.06) with similar functional outcome and complication rates irrespective of the type of fixation. Conclusion: This study showed that the success rates in term of fracture union, outcome functional grades and complication rates were not directly dependent on the types of the fixation: plating or locked intra-medullary nailing.
基金Supported by Natural Science Foundation of Chongqing,China,No.CSTB2023NSCQ-MSX1080.
文摘BACKGROUND Whether operation is superior to non-operation for humeral shaft fracture remains debatable.We hypothesized that operation could decrease the nonunion and reintervention rates and increase the functional outcomes.AIM To compare the clinical efficacy between operative and nonoperative approaches for humeral shaft fractures.METHODS We searched the PubMed,Web of Science,ScienceDirect,and Cochrane databases from 1990 to December 2023 for clinical trials and cohort studies comparing the effects of operative and conservative methods on humeral shaft fractures.Two investigators independently extracted data from the eligible studies,and the other two assessed the methodological quality of each study.The quality of the included studies was assessed using the Cochrane risk bias or Newcastle-Ottawa Scale.The nonunion,reintervention and the overall complications and functional scores were pooled and analyzed using Review Manager software(version 5.3).RESULTS A total of four randomized control trials and 13 cohort studies were included,with 1285 and 1346 patients in the operative and nonoperative groups,respectively.Patients in the operative group were treated with a plate or nail,whereas those in the conservative group were managed with splint or functional bracing.Four studies were assessed as having a high risk of bias,and the other 13 were of a low risk of bias according to the Newcastle-Ottawa Scale or Cochrane risk bias tool.The operative group had a significantly decreased rate of nonunion[odds ratio(OR)0.30;95%CI:0.23 to 0.40,reintervention(OR:0.33;95%CI:0.24 to 0.47),and overall complications(OR:0.62;95%CI:0.49 to 0.78)].The pooled effect of the Disabilities of Arm,Shoulder,and Hand score showed a significant difference at 3[mean difference(MD)-8.26;95%CI:-13.60 to-2.92],6(MD:-6.72;95%CI:-11.34 to-2.10),and 12 months(MD:-2.55;95%CI:-4.36 to-0.74).The pooled effect of Visual Analog Scale scores and the Constant-Murley score did not significantly differ between the two groups.CONCLUSION This systematic review and meta-analysis revealed a trend of rapid functional recovery and decreased rates of nonunion and reintervention after operation for humeral shaft fracture compared to conservative treatment.
文摘Introduction: The management of fractures of the tibia shaft is an important aspect of orthopaedic care, and the selection of the surgical method for fixation can substantially impact patient outcomes. The current review aims to compare the outcomes of adult tibia fractures treated with solid nails to those treated with hollow nails. Methods: A search on Scopus, PubMed, and Cochrane Library, using three keywords (Outcome, Tibia shaft fractures, Nail) was conducted in April 2023. Results were compiled and two independent reviewers screened and selected eligible articles After removing duplicates, titles and abstracts were read to exclude ineligible studies. Full-text articles of the remaining papers were read to select eligible studies which were further critically appraised to ascertain their methodological quality. The data extracted from the selected papers were synthesized using a combination of pooling of results, tests of statistical difference (t-test and chi-square) and narrative synthesis methods. Results: A total of 2295 articles were obtained from the databases and citation searching. A total of 9 papers were identified as eligible and included in the review. Findings revealed that there is no statistical difference in the outcomes of tibia fractures treated with either solid or hollow nail groups such as duration of surgery (p = 0.541), rate of delayed and non-union (p = 0.342), and rate of surgical site infections (p = 0.395). Conclusion: Intramedullary nailing of tibia shaft fractures with either solid or hollow nails have similar functional outcomes.
基金Projects(51278170,U1134207)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘A simplified approach was proposed to analyze the negative skin friction calculation of special-shaped pile considering pile-soil interaction under surcharge. Based on the concentric cylinder shearing theory, considering the changes of pile shape(such as, taper angle and diameters of pile base, etc.), the load-transfer of special-shaped pile was built. The accuracy of the developed simplified approach was verified by numerical simulation model with the same condition. Then, the influence factors, such as, taper angles, the diameter of pile base, surcharge, and pile-soil interface parameters were analyzed and discussed. The results show that the developed simplified approach can calculate NSF of special-shaped pile under surcharge effectively. A limited parametric study indicates that in many practical situations special-shaped piles(such as belled wedge pile shown in this work) offer a design option that is more economical than traditional uniform cross-section piles.
基金supported by the National Natural Science Foundation of China(22078030,52021004)National Natural Science Foundation of Chongqing(2022NSCQ-LZX0271)+2 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-005)National Key Research and Development Project(2019YFC1905802,2022YFC3901204)Key Project of Independent Research Project of State Key Laboratory of coal mine disaster dynamics and control(2011DA105287-zd201902).
文摘This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers.
基金Supported by National Natural Science Foundation of China (Grant No.11972129)National Science and Technology Major Project of China (Grant No.2017-IV-0008-0045)+1 种基金Heilongjiang Provincial Natural Science Foundation (Grant No.YQ2022A008)the Fundamental Research Funds for the Central Universities。
文摘The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.
文摘Four exterior joints with special-shaped columns which have different lengths of limbs are tested under low cyclic loading. Speeial-shaped columns adopted are L- and T-shaped in section. It can be concluded that crack pattern, failure mode and shear strength of joints are affected by the length of limb, and that shear strength and ductility increase with the length of limb; the joints with the flexural failure of the beam have better seismic behavior than those with the shear failure of the joint core.
文摘Driven by the rapid economic development,the development of transportation in China has begun to move towards mountainous areas.The climate environment,topography and landform of mountainous cities are different from those of plain areas.In mountainous cities,the area of opposite interchanges between expressways and urban roads is generally large,which has a certain contradiction with the topographic conditions of mountainous cities.Therefore,it is necessary to reasonably design the opposite interchanges between expressways and urban roads in mountainous cities.The author explores and analyzes the factors restricting the special-shaped interchange between expressway and urban road in mountainous cities and the main fbnns of special-shaped interchange,and puts forward a reasonable design scheme,hoping to make a smooth development of the special-shaped interchange in mountainous cities.
文摘Composite hollow shafts are used in power transmission applications due to their high specific stiffness and high specific strength.The dynamic characteristics of these shafts are important for transmission applications.Dynamic modelling of these shafts is generally carried out using Equivalent Modulus Beam Theory(EMBT)and Layerwise Beam Theory(LBT)formulations.The EMBT formulation is modified by considering stacking sequence,shear normal coupling,bending twisting coupling and bending stretching coupling.It is observed that modified EMBT formulation is underestimating the shafts stiffness at lower length/mean diameter(l/dm)ratios.In the present work,a new formulation is developed by adding shear deformation along the thickness direction to the existing modified EMBT formulation.The variation of shear deformation along the thickness direction is found using different shear deformation theories,i.e.,first-order shear deformation theory(FSDBT),parabolic shear deformation theory(PSDBT),trigonometric shear deformation theory(TSDBT),and hyperbolic shear deformation theory(HSDBT).The analysis is performed at l/d_(m) ratios of 5,10,15,20,25,30,35,and 40 for carbon/epoxy composites,E-glass/epoxy composites,and boron/epoxy composite shafts.The results show that new formulation has improved the bending natural frequency of the composite shafts for l/d_(m)<15 in comparison with modified EMBT.The effect of new formulation is more significant for the second and third bending modes of natural frequencies.
基金supported by Opening Foundation of Key Laboratory of New Technology for Construction of Cities in Mountain Area,Ministry of Education,China(LNTCCMA-20210104)This work was also supported by the Natural Science Foundation of China(Grant No.51408113)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140632).
文摘With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise.
文摘Radial head dislocation associated with an ipsilateral radial shaft fracture is a rare lesion, even more so for open lesions. Few cases have been found in the literature. We report this case due to its exceptional nature and discuss the mechanism of onset. A twenty-five-year-old patient presented with a dislocation of the radial head associated with a GUSTILO ANDERSON type II open fracture of the radial shaft following an occupational accident. He was managed twenty-four hours after the trauma. The mechanism was a direct blow. The dislocation was reduced by external manoeuvre following open reduction of the radial shaft. The fracture was stabilized by two Kirschner wires following reduction. The result at 12 months was satisfactory from a clinical and radiological standpoint.