The current tribological research is intended to achieve maximum wear resistance under the structural adaptability of tribocoupling elements, which requires application of means to reduce the activation of the metal s...The current tribological research is intended to achieve maximum wear resistance under the structural adaptability of tribocoupling elements, which requires application of means to reduce the activation of the metal surface layers, decrease in frictional work, regulation of passivation and temperature control. The aim of this study is to identify the patterns that influence the kinetics formation of the boundary layers of lubricating mineral gear oil on activated friction contact surfaces, and the increment of the friction specific work on wear-resistant steel 42Cr4 and 100Cr6 in frequent start and stop operation mode. Due to the activation of surface layers of metal in the non-stationary operating conditions of the contact surfaces, the gradual forming of the boundary lubricant adsorption layers with increased effective viscosity in contact occurs, exhibiting high adaptation ability, and the boundary layer thickness is from 0.2 to 4 microns. This research analyzed the lubricating ability of oil at the starting maximum torque of friction, showing that the thickness of the oil layer formed in contact had a dual nature—boundary and hydrodynamic. The pure rolling conditions promote localization of shear in the lubricating layers, and the high frictional properties of the transmission oil have been identified regardless of the hardness of the investigated surfaces.展开更多
The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated.Several differently shaped pin fins(i.e.,circular,elliptical,and drop-sha...The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated.Several differently shaped pin fins(i.e.,circular,elliptical,and drop-shaped)with the same cross-sectional areas were compared in a staggered arrangement.The Reynolds number based on the obstructed section hydraulic diameter(defined as the ratio of the total wetted surface area to the open duct volume available for flow)was varied from 4800 to 8200.The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them,which decreased the aerodynamic penalty compared to circular pin fins.The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins.In terms of specific performance parameters,drop-shaped pin fins are a promising alternative configuration to circular pin fins.展开更多
Iron alloyed Ni3Al with composition of Ni-18. 8Ab10. 7Fe-0. 5Mn-0. 5Ti-0. 2B in atom percent (NAC alloy) showed attractive tribological properties under unlubrication condition at room temperature. The alloy was pre...Iron alloyed Ni3Al with composition of Ni-18. 8Ab10. 7Fe-0. 5Mn-0. 5Ti-0. 2B in atom percent (NAC alloy) showed attractive tribological properties under unlubrication condition at room temperature. The alloy was prepared by hot isostatic pressing (HIP) process. The wear properties were associated with its intrinsic deformation mechanism. Unfortunately, the single phase NAC-alloy worked inadequately with its counterpart disk, and also showed a poor machinability. In the present work, NAC-alloy matrix composite with 6 % (volume percent) MnS particle addi- tion was studied to improve its wear behaviors and performance on machining. Two metallurgical processes of HIP and vacuum casting were applied to produce the testing materials. Pin-on-disk (POD) measurements were carried out at room temperature. A commercial vermicular graphite cast iron was selected as a reference material. The counter- part disk was made of a grey cast iron as liner material in ship engines. The contact pressures of 2.83 MPa and 5.66 MPa were normally applied in the tests. The investigation indicated that MnS particle addition in the NAC-alloy composites functions as an effective solid lubricant, and improved wear properties and machinability of the materials. Obvi- ously, as-cast NAC-alloy with in-situ formed MnS-phase was working more effectively with the counterpart, compa- ring to the HIPed NAC-alloy composite with MnS particles. At the high contact pressure of 5.66 MPa, the specific wear rate of the as-cast NAC-alloy composite was high. The phenomenon of the negative effect is mostly due to the brittle second NiAl phase as evidenced in the microstructure analysis.展开更多
文摘The current tribological research is intended to achieve maximum wear resistance under the structural adaptability of tribocoupling elements, which requires application of means to reduce the activation of the metal surface layers, decrease in frictional work, regulation of passivation and temperature control. The aim of this study is to identify the patterns that influence the kinetics formation of the boundary layers of lubricating mineral gear oil on activated friction contact surfaces, and the increment of the friction specific work on wear-resistant steel 42Cr4 and 100Cr6 in frequent start and stop operation mode. Due to the activation of surface layers of metal in the non-stationary operating conditions of the contact surfaces, the gradual forming of the boundary lubricant adsorption layers with increased effective viscosity in contact occurs, exhibiting high adaptation ability, and the boundary layer thickness is from 0.2 to 4 microns. This research analyzed the lubricating ability of oil at the starting maximum torque of friction, showing that the thickness of the oil layer formed in contact had a dual nature—boundary and hydrodynamic. The pure rolling conditions promote localization of shear in the lubricating layers, and the high frictional properties of the transmission oil have been identified regardless of the hardness of the investigated surfaces.
基金the National Natural Science Foundation of China(Grant no.51276090)for this project.
文摘The flow and heat transfer characteristics inside a rectangular channel embedded with pin fins were numerically and experimentally investigated.Several differently shaped pin fins(i.e.,circular,elliptical,and drop-shaped)with the same cross-sectional areas were compared in a staggered arrangement.The Reynolds number based on the obstructed section hydraulic diameter(defined as the ratio of the total wetted surface area to the open duct volume available for flow)was varied from 4800 to 8200.The more streamlined drop-shaped pin fins were better at delaying or suppressing separation of the flow passing through them,which decreased the aerodynamic penalty compared to circular pin fins.The heat transfer enhancement of the drop-shaped pin fins was less than that of the circular pin fins.In terms of specific performance parameters,drop-shaped pin fins are a promising alternative configuration to circular pin fins.
基金Item Sponsored by Swedish VINNOVA and Chinese MOST for International Colla borative Research Projects(P32737-1,P32737-2)
文摘Iron alloyed Ni3Al with composition of Ni-18. 8Ab10. 7Fe-0. 5Mn-0. 5Ti-0. 2B in atom percent (NAC alloy) showed attractive tribological properties under unlubrication condition at room temperature. The alloy was prepared by hot isostatic pressing (HIP) process. The wear properties were associated with its intrinsic deformation mechanism. Unfortunately, the single phase NAC-alloy worked inadequately with its counterpart disk, and also showed a poor machinability. In the present work, NAC-alloy matrix composite with 6 % (volume percent) MnS particle addi- tion was studied to improve its wear behaviors and performance on machining. Two metallurgical processes of HIP and vacuum casting were applied to produce the testing materials. Pin-on-disk (POD) measurements were carried out at room temperature. A commercial vermicular graphite cast iron was selected as a reference material. The counter- part disk was made of a grey cast iron as liner material in ship engines. The contact pressures of 2.83 MPa and 5.66 MPa were normally applied in the tests. The investigation indicated that MnS particle addition in the NAC-alloy composites functions as an effective solid lubricant, and improved wear properties and machinability of the materials. Obvi- ously, as-cast NAC-alloy with in-situ formed MnS-phase was working more effectively with the counterpart, compa- ring to the HIPed NAC-alloy composite with MnS particles. At the high contact pressure of 5.66 MPa, the specific wear rate of the as-cast NAC-alloy composite was high. The phenomenon of the negative effect is mostly due to the brittle second NiAl phase as evidenced in the microstructure analysis.