To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on car...To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on carbon stocks in aboveground biomass(AGB).Although wood specific gravity(WSG) is known to be an important variable in AGB estimates, there is currently a lack of data on WSG for Malagasy tree species. This study aimed to determine whether estimates of carbon stocks calculated from literature-based WSG values differed from those based on WSG values measured on wood core samples. Carbon stocks in forest biomass were assessed using two WSG data sets:(i) values measured from 303 wood core samples extracted in the study area,(ii) values derived from international databases. Results suggested that there is difference between the field and literaturebased WSG at the 0.05 level. The latter data set was on average 16 % higher than the former. However, carbon stocks calculated from the two data sets did not differ significantly at the 0.05 level. Such findings could be attributed to the form of the allometric equation used which gives more weight to tree diameter and tree height than to WSG. The choice of dataset should depend on the level of accuracy(Tier II or III) desired by REDD+. As higher levels of accuracy are rewarded by higher prices, speciesspecific WSG data would be highly desirable.展开更多
Estimation of terrestrial biomass depends critically on reliable information about wood specific gravity of forest trees. In recent years, wood specific gravity has become more important when exploring the universalit...Estimation of terrestrial biomass depends critically on reliable information about wood specific gravity of forest trees. In recent years, wood specific gravity has become more important when exploring the universality of functional traits of plants and estimating their global carbon stocks. To estimate their specific gravity, wood samples were collected from a total of 34 tree species, 30 from lower elevations and 4 from upper elevations in the Garhwal Himalayas, India. The results show that the average wood specific gravity was 0.631 (ranging between 0.275 ± 0.01 and 0.845 ± 0.03) for the species at lower elevations and 0.727 (ranging between 0.628 ± 0.02 and 0.865 ± 0.02) for the upper elevations. The average wood specific gravity for the upper elevation species was 9.6% greater than that for the species at lower elevations. Aegle marmelos among the lower elevation species and Quercus leucotrichophora among the upper elevation species had the highest wood specific gravity, which were 0.845 ± 0.03 and 0.865 ± 0.02, respectively.展开更多
基金supported by TWAS (The World Academy of Sciences) and CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement)
文摘To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on carbon stocks in aboveground biomass(AGB).Although wood specific gravity(WSG) is known to be an important variable in AGB estimates, there is currently a lack of data on WSG for Malagasy tree species. This study aimed to determine whether estimates of carbon stocks calculated from literature-based WSG values differed from those based on WSG values measured on wood core samples. Carbon stocks in forest biomass were assessed using two WSG data sets:(i) values measured from 303 wood core samples extracted in the study area,(ii) values derived from international databases. Results suggested that there is difference between the field and literaturebased WSG at the 0.05 level. The latter data set was on average 16 % higher than the former. However, carbon stocks calculated from the two data sets did not differ significantly at the 0.05 level. Such findings could be attributed to the form of the allometric equation used which gives more weight to tree diameter and tree height than to WSG. The choice of dataset should depend on the level of accuracy(Tier II or III) desired by REDD+. As higher levels of accuracy are rewarded by higher prices, speciesspecific WSG data would be highly desirable.
文摘Estimation of terrestrial biomass depends critically on reliable information about wood specific gravity of forest trees. In recent years, wood specific gravity has become more important when exploring the universality of functional traits of plants and estimating their global carbon stocks. To estimate their specific gravity, wood samples were collected from a total of 34 tree species, 30 from lower elevations and 4 from upper elevations in the Garhwal Himalayas, India. The results show that the average wood specific gravity was 0.631 (ranging between 0.275 ± 0.01 and 0.845 ± 0.03) for the species at lower elevations and 0.727 (ranging between 0.628 ± 0.02 and 0.865 ± 0.02) for the upper elevations. The average wood specific gravity for the upper elevation species was 9.6% greater than that for the species at lower elevations. Aegle marmelos among the lower elevation species and Quercus leucotrichophora among the upper elevation species had the highest wood specific gravity, which were 0.845 ± 0.03 and 0.865 ± 0.02, respectively.