The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive ...The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.展开更多
Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for ...Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for the ROP increase from torsional impact tools.Therefore,it has practical engineering significance to study the rock-breaking mechanism of torsional impact.In this paper,discrete element method(DEM)software(PFC2 D)is used to compare granite breaking under the steady and torsional impacting conditions.Meanwhile,the energy consumption to break rock,microscopic crushing process and chip characteristics as well as the relationship among these three factors for granite under different impacting frequencies and amplitudes are discussed.It is found that the average cutting force is smaller in the case of torsional impact cutting(TIC)than that in the case of steady loading.The mechanical specific energy(MSE)and the ratio of brittle energy consumption to total energy are negatively correlated;rock-breaking efficiency is related to the mode of action between the cutting tooth and rock.Furthermore,the ROP increase mechanism of torsional impact drilling technology is that the ratio of brittle energy consumption under the TIC condition is larger than that under a steady load;the degree of repeated fragmentation of rock chips under the TIC condition is lower than that under the steady load,and the TIC load promotes the formation of a transverse cracking network near the free surface and inhibits the formation of a deep longitudinal cracking network.展开更多
Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows for non-invasive and direct assessment of the viscoelastic properties of materials.Recent advances of background-free confocal Br...Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows for non-invasive and direct assessment of the viscoelastic properties of materials.Recent advances of background-free confocal Brillouin spectrometer allows investigators to acquire the Brillouin spectra for turbid samples as well as transparent ones.However,due to strong signal loss induced by the imperfect optical setup,the Brillouin photons are usually immersed in background noise.In this report,we proposed and experimentally demonstrated multiple approaches to enhance the signal collction eficiency.A signal enhancement by>4 times can be observed,enabling ob-servation of ultra-weak signals.展开更多
The confined compressive strength(CCS)plays a vital role in drilling optimization.On the basis of Jizba's experimental results,a new CCS model considering the effects of the porosity and nonlinear characteristics ...The confined compressive strength(CCS)plays a vital role in drilling optimization.On the basis of Jizba's experimental results,a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed.Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics,which is not suitable for calculating the confining pressure in rock mechanics,the double effective stress theory,which treats the porosity as a weighting factor of the formation pore pressure,is adopted in this study.The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin,China,and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling(UBD)and overbalanced drilling(OBD).展开更多
基金supported by the Joint Funds of The National Natural Science Foundation of China(Grant No.U19B6003-05)the National Key Research and Development Program of China(No.2019YFA0708302)+2 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51725404)the Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH01201911414038)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant No.ZLZX2020-01).
文摘The Stinger PDC cutter has high rock-breaking efficiency and excellent impact and wear resistance, which can significantly increase the rate of penetration (ROP) and extend PDC bit life for drilling hard and abrasive formation. The knowledge of force response and mechanical specific energy (MSE) for the Stinger PDC cutter is of great importance for improving the cutter's performance and optimizing the hybrid PDC bit design. In this paper, 87 single cutter tests were conducted on the granite. A new method for precisely obtaining the rock broken volume was proposed. The influences of cutting depth, cutting angle, and cutting speed on cutting force and MSE were analyzed. Besides, a phenomenological cutting force model of the Stinger PDC cutter was established by regression of experimental data. Moreover, the surface topography and fracture morphology of the cutting groove and large size cuttings were measured by a 3D profilometer and a scanning electron microscope (SEM). Finally, the rock-breaking mechanism of the Stinger PDC cutter was illustrated. The results indicated that the cutting depth has the greatest influence on the cutting force and MSE, while the cutting speed has no obvious effects, especially at low cutting speeds. As the increase of cutting depth, the cutting force increases linearly, and MSE reduces with a quadratic polynomial relationship. When the cutting angle raises from 10° to 30°, the cutting force increases linearly, and the MSE firstly decreases and then increases. The optimal cutting angle for breaking rock is approximately 20°. The Stinger PDC cutter breaks granite mainly by high concentrated point loading and tensile failure, which can observably improve the rock breaking efficiency. The key findings of this work will help to reveal the rock-breaking mechanisms and optimize the cutter arrangement for the Stinger PDC cutter.
基金supported by the National Natural Science Foundation of China(Grant No.51674214)International Cooperation Project of Sichuan Science and Technology Plan(2016HH0008)+1 种基金Youth Science and Technology Innovation Research Team of Sichuan Province(2017TD0014)Applied Basic Research of Sichuan Province(Free Exploration-2019YJ0520)
文摘Torsional impact drilling is a new technology which has the advantages of high rock-breaking efficiency and a high rate of penetration(ROP).So far,there is no in-depth understanding of the rock-breaking mechanism for the ROP increase from torsional impact tools.Therefore,it has practical engineering significance to study the rock-breaking mechanism of torsional impact.In this paper,discrete element method(DEM)software(PFC2 D)is used to compare granite breaking under the steady and torsional impacting conditions.Meanwhile,the energy consumption to break rock,microscopic crushing process and chip characteristics as well as the relationship among these three factors for granite under different impacting frequencies and amplitudes are discussed.It is found that the average cutting force is smaller in the case of torsional impact cutting(TIC)than that in the case of steady loading.The mechanical specific energy(MSE)and the ratio of brittle energy consumption to total energy are negatively correlated;rock-breaking efficiency is related to the mode of action between the cutting tooth and rock.Furthermore,the ROP increase mechanism of torsional impact drilling technology is that the ratio of brittle energy consumption under the TIC condition is larger than that under a steady load;the degree of repeated fragmentation of rock chips under the TIC condition is lower than that under the steady load,and the TIC load promotes the formation of a transverse cracking network near the free surface and inhibits the formation of a deep longitudinal cracking network.
基金supported by the start-up funds available through Texas A&M Universitysupport of the NIH (Grant#R21EB011703) and the NSF (ECCS Grant#10665620,DBI Grant#10665621 and CBET Grant#10665623).
文摘Brillouin spectroscopy is an emerging tool for microscopic optical imaging as it allows for non-invasive and direct assessment of the viscoelastic properties of materials.Recent advances of background-free confocal Brillouin spectrometer allows investigators to acquire the Brillouin spectra for turbid samples as well as transparent ones.However,due to strong signal loss induced by the imperfect optical setup,the Brillouin photons are usually immersed in background noise.In this report,we proposed and experimentally demonstrated multiple approaches to enhance the signal collction eficiency.A signal enhancement by>4 times can be observed,enabling ob-servation of ultra-weak signals.
基金The work is supported by the Open Fund(Number:PLN1421)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University,SWPU Science&Technology Fund(Number:2013XJZ029)Sichuan Youth Science&Technology Foundation(Number:2014JQ0045)Natural Science Foundation of China(Number:51134004).
文摘The confined compressive strength(CCS)plays a vital role in drilling optimization.On the basis of Jizba's experimental results,a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed.Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics,which is not suitable for calculating the confining pressure in rock mechanics,the double effective stress theory,which treats the porosity as a weighting factor of the formation pore pressure,is adopted in this study.The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin,China,and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling(UBD)and overbalanced drilling(OBD).