期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mineralization of Petroleum Contaminated Wastewater by Co-Culture of Petroleum-Degrading Bacterial Community and Biosurfactant-Producing Bacterium
1
作者 Bo young Jeon Il Lae Jung Doo Hyun Park 《Journal of Environmental Protection》 2011年第7期895-902,共8页
Activity of a crude biosurfactant extracted from the culture fluid of Serratia sp. that was isolated from riverbed soil was shown to increase in proportion to the cultivation time, and was higher at pH 8 than at pH 7.... Activity of a crude biosurfactant extracted from the culture fluid of Serratia sp. that was isolated from riverbed soil was shown to increase in proportion to the cultivation time, and was higher at pH 8 than at pH 7. Serratia sp. grew in the mineral-based medium with soybean oil but was not with kerosene-diesel. The petroleum-degrading bacteria—Acinetobacter sp., Pseudomonas sp., Paracoccus sp., and Cupriavidus sp.—were isolated from a specially designed enrichment culture. The efficiency of mineralization of wastewater contaminated with kerosene and diesel (WKD) by the petroleum-degrading bacterial community (PDBC) was enhanced significantly by addition of the crude biosurfactant. The efficiency of mineralization of the WKD was also about 2 times boosted by co-culture of Serratia sp. and PDBC. Bacterial community of Serratia sp. and PDBC co-cultivated in the WKD was maintained for at least 8 days according to the TGGE pattern of 16S rDNA obtained from the bacterial culture. In conclusion, the co-culture of Serratia sp. and PDBC is an applicable technique for the mineralization of wastewater contaminated with petroleum, which may substitute for chemical or biological surfactant. 展开更多
关键词 BIOSURFACTANT SERRATIA Sp. petroleum-degrading bacteria mixed Culture TGGE
下载PDF
Fenton氧化—微生物法降解土壤中石油烃 被引量:7
2
作者 韩旭 李广云 +2 位作者 尹宁宁 许锐伟 王丽萍 《化工环保》 CAS CSCD 北大核心 2017年第2期237-242,共6页
以长期被苯系物污染的活性污泥为菌源,采用液相"诱导物-中间产物-目标污染物"驯化模式驯化出专性混合石油降解菌群,并将其用于Fenton氧化—微生物法处理模拟石油污染土壤。高通量测序结果表明,产黄杆菌属(Rhodanobacter)、分... 以长期被苯系物污染的活性污泥为菌源,采用液相"诱导物-中间产物-目标污染物"驯化模式驯化出专性混合石油降解菌群,并将其用于Fenton氧化—微生物法处理模拟石油污染土壤。高通量测序结果表明,产黄杆菌属(Rhodanobacter)、分支杆菌属(Mycobacterium)和根瘤菌属(Rhizobiales)为主导菌属。实验结果表明:接种混合菌群后降解50 d,土样的总石油烃(TPH)去除率较土著菌提高了13.4~20.5百分点;对于TPH含量(w)分别为4%,8%,11%的土样,Fenton氧化的最佳H_2O_2加入量分别为3,4,4 mol/L(Fe^(2+)加入量0.04 mol/L),TPH总去除率分别可达88.8%,65.0%,47.7%,较单独Fenton氧化或单独微生物法均有很大程度的提高,且缩短了降解时间,增加了土壤有机质。 展开更多
关键词 专性混合石油降解菌 FENTON氧化 微生物法 石油烃
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部