Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emi...Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.展开更多
Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine lea...Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.展开更多
The specific emitter identification (SEI) technique some external feature measurements of the signal. determines the unique emitter of a given signal by using It has recently attracted a great deal of attention beca...The specific emitter identification (SEI) technique some external feature measurements of the signal. determines the unique emitter of a given signal by using It has recently attracted a great deal of attention because many applications can benefit from it. This work addresses the SEI problem using two methods, namely, the normalized visibility graph entropy (NVGE) and the normalized horizontal visibility graph entropy (NHVGE) based on treating emitters as nonlinear dynamical systems. Firstly, the visibility graph (VG) and the horizontal visibility graph (HVG) are used to convert the instantaneous amplitude, phase and frequency of received signals into graphs. Then, based on the information captured by the VG and the HVG, the normalized Shannon entropy (NSE) calculated from the corresponding degree distributions are utilized as the rf fingerprint. Finally, four emitters from the same manufacturer are utilized to evaluate the performance of the two methods. Experimental results demonstrate that both the NHVGE-based method and NVGE-based method are quite effective and they perform much better than the method based on the normalized permutation entropy (NPE) in the case of a small amount of data. The NVGE-based method performs better than the NHVGE-based method since the VG can extract more information than the HVG does. Moreover, our methods do not distinguish between the transient signal and the steady-state signal, making it practical.展开更多
基金supported by the National Natural Science Foundation of China(62061003)Sichuan Science and Technology Program(2021YFG0192)the Research Foundation of the Civil Aviation Flight University of China(ZJ2020-04,J2020-033)。
文摘Existing specific emitter identification(SEI)methods based on hand-crafted features have drawbacks of losing feature information and involving multiple processing stages,which reduce the identification accuracy of emitters and complicate the procedures of identification.In this paper,we propose a deep SEI approach via multidimensional feature extraction for radio frequency fingerprints(RFFs),namely,RFFsNet-SEI.Particularly,we extract multidimensional physical RFFs from the received signal by virtue of variational mode decomposition(VMD)and Hilbert transform(HT).The physical RFFs and I-Q data are formed into the balanced-RFFs,which are then used to train RFFsNet-SEI.As introducing model-aided RFFs into neural network,the hybrid-driven scheme including physical features and I-Q data is constructed.It improves physical interpretability of RFFsNet-SEI.Meanwhile,since RFFsNet-SEI identifies individual of emitters from received raw data in end-to-end,it accelerates SEI implementation and simplifies procedures of identification.Moreover,as the temporal features and spectral features of the received signal are both extracted by RFFsNet-SEI,identification accuracy is improved.Finally,we compare RFFsNet-SEI with the counterparts in terms of identification accuracy,computational complexity,and prediction speed.Experimental results illustrate that the proposed method outperforms the counterparts on the basis of simulation dataset and real dataset collected in the anechoic chamber.
基金the National Natural Science Foundation of China(No.U20B2038,No.61871398,NO.61901520 and No.61931011)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Key R&D Program of China under Grant 2018YFB1801103.
文摘Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.
基金Supported by the National Natural Science Foundation of China under Grant No U1530126the Fundamental Research Funds for the Central Universities under Grant No ZYGX2015J022
文摘The specific emitter identification (SEI) technique some external feature measurements of the signal. determines the unique emitter of a given signal by using It has recently attracted a great deal of attention because many applications can benefit from it. This work addresses the SEI problem using two methods, namely, the normalized visibility graph entropy (NVGE) and the normalized horizontal visibility graph entropy (NHVGE) based on treating emitters as nonlinear dynamical systems. Firstly, the visibility graph (VG) and the horizontal visibility graph (HVG) are used to convert the instantaneous amplitude, phase and frequency of received signals into graphs. Then, based on the information captured by the VG and the HVG, the normalized Shannon entropy (NSE) calculated from the corresponding degree distributions are utilized as the rf fingerprint. Finally, four emitters from the same manufacturer are utilized to evaluate the performance of the two methods. Experimental results demonstrate that both the NHVGE-based method and NVGE-based method are quite effective and they perform much better than the method based on the normalized permutation entropy (NPE) in the case of a small amount of data. The NVGE-based method performs better than the NHVGE-based method since the VG can extract more information than the HVG does. Moreover, our methods do not distinguish between the transient signal and the steady-state signal, making it practical.