One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser s...One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the space. Disadvantage of conventional fixed window method is that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise, but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, the concept of adaptive window method is newly introduced to conventional laser speckle image analysis. In addition, the modified adaptive window method applied to other selection images. We have compared conventional Laser Speckle Contrast Analysis (LASCA) and its variants with the proposed method in terms of image quality and processing complexity, Moreover compared the result of the accompamed changing sdection images have also been compared.展开更多
In this paper,a model-based reconstruction technique is proposed to simultaneously measure the relative deoxyhemoglobin concentration and the relative blood flow velocity in cerebral cortex.With the help of this model...In this paper,a model-based reconstruction technique is proposed to simultaneously measure the relative deoxyhemoglobin concentration and the relative blood flow velocity in cerebral cortex.With the help of this model-based reconstruction technique,artifacts due to nonuniform laser illumination and curvature of cortex are efficiently corrected.The results of relative deoxyhemoglobin concentration and relative blood flow velocity are then used to detect and distinguish cerebral arteries and veins.In an experimental study on rat,cerebral blood vessels are segmented from the reconstructed blood flow image by Otsu multiple threshold method.Afterwards,arteries and veins are distinguished by a simple fuzzy criterion based on the information of relative deoxyhemoglobin concentration.展开更多
基金supported by the SEOUL R&BD NT070079,Korea,the ITRC(Information Technology Research Center)support program supervised by the ⅡTA(Institute for Information Technology Advancement)
文摘One of the advantages of laser speckle is detecting microvascular through image processing. This paper proposes a new image processing method for laser speckle, adaptive window method that adaptively processes laser speckle images in the space. Disadvantage of conventional fixed window method is that it uses the same window size regardless of target areas. Inherently laser speckle contains undesired noise. Thus a large window is helpful for removing the noise, but it results in low resolution of image. Otherwise a small window may detect micro vascular but it has limits in noise removal. To overcome this trade-off, the concept of adaptive window method is newly introduced to conventional laser speckle image analysis. In addition, the modified adaptive window method applied to other selection images. We have compared conventional Laser Speckle Contrast Analysis (LASCA) and its variants with the proposed method in terms of image quality and processing complexity, Moreover compared the result of the accompamed changing sdection images have also been compared.
基金supported by NIH/NIA1R01AG 029681supported by the New Century Talent Program by the Ministry of Education of China,and Shanghai Shuguang Program(07SG13)supported by the China Scholarship Council.
文摘In this paper,a model-based reconstruction technique is proposed to simultaneously measure the relative deoxyhemoglobin concentration and the relative blood flow velocity in cerebral cortex.With the help of this model-based reconstruction technique,artifacts due to nonuniform laser illumination and curvature of cortex are efficiently corrected.The results of relative deoxyhemoglobin concentration and relative blood flow velocity are then used to detect and distinguish cerebral arteries and veins.In an experimental study on rat,cerebral blood vessels are segmented from the reconstructed blood flow image by Otsu multiple threshold method.Afterwards,arteries and veins are distinguished by a simple fuzzy criterion based on the information of relative deoxyhemoglobin concentration.