期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Pairwise constraint propagation via low-rank matrix recovery
1
作者 Zhenyong Fu 《Computational Visual Media》 2015年第3期211-220,共10页
As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to pred... As a kind of weaker supervisory information, pairwise constraints can be exploited to guide the data analysis process, such as data clustering. This paper formulates pairwise constraint propagation, which aims to predict the large quantity of unknown constraints from scarce known constraints, as a low-rank matrix recovery(LMR) problem. Although recent advances in transductive learning based on matrix completion can be directly adopted to solve this problem, our work intends to develop a more general low-rank matrix recovery solution for pairwise constraint propagation, which not only completes the unknown entries in the constraint matrix but also removes the noise from the data matrix. The problem can be effectively solved using an augmented Lagrange multiplier method. Experimental results on constrained clustering tasks based on the propagated pairwise constraints have shown that our method can obtain more stable results than state-of-the-art algorithms,and outperform them. 展开更多
关键词 semi-supervised learning pairwise constraint propagation low-rank matrix recovery(LMR) constrained clustering matrix completion
原文传递
一种结合主动学习的半监督文档聚类算法 被引量:30
2
作者 赵卫中 马慧芳 +1 位作者 李志清 史忠植 《软件学报》 EI CSCD 北大核心 2012年第6期1486-1499,共14页
半监督文档聚类,即利用少量具有监督信息的数据来辅助无监督文档聚类,近几年来逐渐成为机器学习和数据挖掘领域研究的热点问题.由于获取大量监督信息费时费力,因此,国内外学者考虑如何获得少量但对聚类性能提高显著的监督信息.提出一种... 半监督文档聚类,即利用少量具有监督信息的数据来辅助无监督文档聚类,近几年来逐渐成为机器学习和数据挖掘领域研究的热点问题.由于获取大量监督信息费时费力,因此,国内外学者考虑如何获得少量但对聚类性能提高显著的监督信息.提出一种结合主动学习的半监督文档聚类算法,通过引入成对约束信息指导DBSCAN的聚类过程来提高聚类性能,得到一种半监督文档聚类算法Cons-DBSCAN.通过对约束集中所含信息量的衡量和对DBSCAN算法本身的分析,提出了一种启发式的主动学习算法,能够选取含信息量大的成对约束集,从而能够更高效地辅助半监督文档聚类.实验结果表明,所提出的算法能够高效地进行文档聚类.通过主动学习算法获得的成对约束集,能够显著地提高聚类性能.并且,算法的性能优于两个代表性的结合主动学习的半监督聚类算法. 展开更多
关键词 半监督聚类 文档聚类 主动学习 成对约束
下载PDF
基于监督信息特性的主动半监督谱聚类算法 被引量:34
3
作者 王娜 李霞 《电子学报》 EI CAS CSCD 北大核心 2010年第1期172-176,共5页
半监督聚类是利用少部分监督信息辅助大量未标签数据进行非监督的学习,其聚类性能的改善依赖于监督信息,因此挖掘适合半监督聚类的监督信息非常关键.提出了一种基于监督信息特性的主动学习策略,即找出同一类中距离相对较远的数据对象对... 半监督聚类是利用少部分监督信息辅助大量未标签数据进行非监督的学习,其聚类性能的改善依赖于监督信息,因此挖掘适合半监督聚类的监督信息非常关键.提出了一种基于监督信息特性的主动学习策略,即找出同一类中距离相对较远的数据对象对和不同类中距离相对较近的数据对象对组成监督信息,并将其引入谱聚类算法,构建新颖的主动半监督谱聚类算法ASSC(Active Semi-supervised Spectral Clustering).利用该监督信息调整谱聚类中点与点之间的距离矩阵,使类内各点紧聚,类间散布.通过对UCI基准数据集以及人工数据集的实验结果表明,ASSC算法优于采用随机选取监督信息的谱聚类性能. 展开更多
关键词 谱聚类 半监督聚类 主动学习 监督信息
下载PDF
一种基于Seeds集和成对约束的主动半监督聚类算法 被引量:2
4
作者 陈志雨 王慧君 +1 位作者 胡明 刘钢 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第3期664-672,共9页
针对半监督聚类算法中监督信息使用不充分,监督信息中信息含有量低的问题,提出一种结合主动学习的半监督聚类算法.首先结合使用数据的类别标记和成对约束信息,指导Kmeans聚类过程,设计出一种基于Seeds集和成对约束的半监督聚类算法SC-Km... 针对半监督聚类算法中监督信息使用不充分,监督信息中信息含有量低的问题,提出一种结合主动学习的半监督聚类算法.首先结合使用数据的类别标记和成对约束信息,指导Kmeans聚类过程,设计出一种基于Seeds集和成对约束的半监督聚类算法SC-Kmeans;其次将主动学习算法引入到SC-Kmeans中,以尽量小的代价选取信息含有量更高的监督信息,提高SC-Kmeans算法的聚类精度;最后在UCI标准数据集上进行仿真实验.实验结果表明,该算法取得了较好的聚类效果,有效提高了聚类准确率. 展开更多
关键词 半监督聚类 Kmeans算法 成对约束 Seeds集 主动学习
下载PDF
主动半监督仿射传播聚类算法 被引量:2
5
作者 雷琪 余慧萍 吴敏 《模式识别与人工智能》 EI CSCD 北大核心 2015年第11期961-968,共8页
仿射传播聚类算法的学习过程是无监督的,存在忽略数据集内部结构的问题.针对上述原因,文中提出基于主动学习和成对约束的半监督仿射传播聚类算法,通过构建主动学习策略,针对不确定性最大的数据对进行询问,尽可能获得有价值的约束信息以... 仿射传播聚类算法的学习过程是无监督的,存在忽略数据集内部结构的问题.针对上述原因,文中提出基于主动学习和成对约束的半监督仿射传播聚类算法,通过构建主动学习策略,针对不确定性最大的数据对进行询问,尽可能获得有价值的约束信息以调整相似度矩阵,从而引导聚类过程.为验证文中算法的有效性,在UCI基准数据库和人脸图像数据集上采用文中算法进行聚类,实验表明文中算法能有效改善聚类性能. 展开更多
关键词 仿射传播 半监督聚类 主动学习 成对约束
下载PDF
基于成对约束的主动半监督聚类算法 被引量:1
6
作者 李轶然 张春娜 《计算机工程与设计》 CSCD 北大核心 2013年第8期2897-2902,共6页
为了解决半监督聚类先验知识少、聚类偏差大的问题,提出了基于成对约束的主动半监督聚类算法。引入主动学习算法,增加约束集的信息量以使聚类效果更好;利用该约束集建立投影矩阵映射数据到低维空间,便于计算并提高聚类效果。算法中提出... 为了解决半监督聚类先验知识少、聚类偏差大的问题,提出了基于成对约束的主动半监督聚类算法。引入主动学习算法,增加约束集的信息量以使聚类效果更好;利用该约束集建立投影矩阵映射数据到低维空间,便于计算并提高聚类效果。算法中提出闭包替代思想,试图简化样本空间,以期获得降低聚类偏差的可能。由于聚类算法的实施对象是低维数据,成对约束集信息量大,聚类的时间效率以及性能均可保证。实验结果表明,采用主动学习的半监督聚类算法聚类效果提升显著,高效合理。 展开更多
关键词 半监督聚类 主动学习 成对约束 约束集 K-MEANS
下载PDF
基于主动学习的K-Hub聚类算法
7
作者 封建邦 何振峰 《计算机系统应用》 2016年第3期187-193,共7页
K-Hub聚类算法是一种有效的高维数据聚类算法,但是它对初始聚类中心的选择非常敏感,并且对于靠近类边界的实例往往不能正确聚类.为了解决这些问题,提出一种结合主动学习和半监督聚类的K-Hub聚类算法.运用主动学习策略学习部分实例的关... K-Hub聚类算法是一种有效的高维数据聚类算法,但是它对初始聚类中心的选择非常敏感,并且对于靠近类边界的实例往往不能正确聚类.为了解决这些问题,提出一种结合主动学习和半监督聚类的K-Hub聚类算法.运用主动学习策略学习部分实例的关联限制,然后利用这些关联限制指导K-Hub的聚类过程.实验结果表明,基于主动学习的K-Hub聚类算法能有效提升K-Hub的聚类准确率. 展开更多
关键词 高维数据 半监督聚类 关联限制 主动学习 K-Hub
下载PDF
基于半监督聚类方法的管道运行状态识别研究
8
作者 方明月 冯早 朱雪峰 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第3期435-445,共11页
目前工业现场采集的大部分数据缺失标记信息,若仅使用其中的标记数据和未标记数据的局部信息会造成学习器的性能下降,而传统半监督学习对标记数据的利用具有随机性且没有考虑监督信息数量的变化对性能的影响.针对上述问题,提出一种主动... 目前工业现场采集的大部分数据缺失标记信息,若仅使用其中的标记数据和未标记数据的局部信息会造成学习器的性能下降,而传统半监督学习对标记数据的利用具有随机性且没有考虑监督信息数量的变化对性能的影响.针对上述问题,提出一种主动学习策略下基于最小生成树的变分贝叶斯推理半监督高斯混合模型,利用主动学习策略在标记信息中重新筛选构建高质量成对约束信息,利用最小生成树聚类来初始化模型参数,提升模型在标记样本数量受扰动时的鲁棒性.选用实验室采集的管道状态检测数据集对提出的模型进行验证,实验结果表明,当标记样本占总体样本的比例从50%下降到10%时,提出的组合模型的预测准确率依旧保持在72.4%以上,而且,当某一类别的样本完全失去监督信息时,该组合模型的聚类效果仍然可以分析判断数据类别的所属类型. 展开更多
关键词 半监督聚类 主动学习策略 高斯混合模型 成对约束
下载PDF
一种主动半监督大规模网络结构发现算法
9
作者 柴变芳 曹欣雨 +1 位作者 魏春丽 王建岭 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2020年第3期243-250,共8页
在线变分期望最大(online variational expectation maximization,onlineVEM)算法可快速发现大规模网络的聚类模式,但在网络结构复杂时算法的处理结果稳定性和准确性欠佳.为更快更准地识别其聚类模式,提出一种主动半监督在线变分期望最... 在线变分期望最大(online variational expectation maximization,onlineVEM)算法可快速发现大规模网络的聚类模式,但在网络结构复杂时算法的处理结果稳定性和准确性欠佳.为更快更准地识别其聚类模式,提出一种主动半监督在线变分期望最大(active semi-supervised onlineVEM,ASonlineVEM)算法.算法首先自动选择代表节点,确定类的个数,并基于代表节点初始化模型;然后迭代执行3个任务:运行在线算法onlineVEM、主动选节点及模型更新,直至算法达到准确率的设定阈值或收敛.在不同结构的人工网络和真实网络上的实验结果表明,ASonlineVEM算法的准确性和效率均优于同类算法.ASonlineVEM算法利用主动选择的节点先验信息提高了网络聚类模式发现的稳定性及准确性,提高了在线算法的运行效率. 展开更多
关键词 计算机应用 大规模网络 半监督聚类 主动学习 在线变分期望最大算法 成对约束
下载PDF
基于谱图和成对约束的主动半监督聚类算法 被引量:5
10
作者 蒋伟进 许宇晖 王欣 《控制与决策》 EI CSCD 北大核心 2013年第6期904-908,共5页
针对半监督聚类学习算法中缺乏主动学习的缺陷,提出一种纠错式主动学习成对约束方法.算法通过寻找一般聚类算法自身难以发现的成对约束信息,同时避免这部分约束信息之间本身的关系,将其引入谱聚类算法,利用该监督信息调整谱聚类中点与... 针对半监督聚类学习算法中缺乏主动学习的缺陷,提出一种纠错式主动学习成对约束方法.算法通过寻找一般聚类算法自身难以发现的成对约束信息,同时避免这部分约束信息之间本身的关系,将其引入谱聚类算法,利用该监督信息调整谱聚类中点与点之间的距离矩阵对两点间距离进行排序,采用双向寻找的方法,使得学习器即使接收到没有标记的数据也能进行主动学习.实验分析表明,所提出算法能够获得较为满意的聚类效果. 展开更多
关键词 半监督聚类 主动式学习 成对约束 谱聚类
原文传递
基于成对约束的主动学习半监督聚类算法 被引量:3
11
作者 蒋伟进 许宇晖 +2 位作者 郭宏 许宇胜 王欣 《应用基础与工程科学学报》 EI CSCD 北大核心 2014年第6期1248-1261,共14页
半监督学习是近年来机器学习领域中的一个重要研究方向,其监督信息的质量对半监督聚类的结果影响很大,主动学习高质量的监督信息很有必要.提出一种纠错式主动学习成对约束的方法,算法通过寻找聚类算法本身不能发现的成对约束监督信息,... 半监督学习是近年来机器学习领域中的一个重要研究方向,其监督信息的质量对半监督聚类的结果影响很大,主动学习高质量的监督信息很有必要.提出一种纠错式主动学习成对约束的方法,算法通过寻找聚类算法本身不能发现的成对约束监督信息,将其引入谱聚类算法,利用该监督信息来调整谱聚类中点与点之间的距离矩阵.采用双向寻找的方法,将点与点间距离进行排序,使得学习器即使在接收到没有标记的数据时也能进行主动学习,实现了在较少的约束下可得到较好的聚类结果.同时,该算法降低了计算复杂度,并解决了聚类过程中成对约束的奇异问题.通过在UCI基准数据集以及人工数据集的实验表明,算法的性能好于相关对比算法,并优于采用随机选取监督信息的谱聚类性能. 展开更多
关键词 半监督聚类 主动式学习 半监督学习 成对约束 谱聚类
原文传递
基于成对约束的主动学习半监督谱聚类 被引量:2
12
作者 蒋伟进 许宇晖 王欣 《系统科学与数学》 CSCD 北大核心 2013年第6期708-723,共16页
半监督学习是近年来机器学习领域中的一个重要研究方向,其监督信息的质量对半监督聚类的结果影响很大,主动学习高质量的监督信息很有必要.提出一种纠错式主动学习成对约束的方法,该算法通过寻找聚类算法本身不能发现的成对约束监督信息... 半监督学习是近年来机器学习领域中的一个重要研究方向,其监督信息的质量对半监督聚类的结果影响很大,主动学习高质量的监督信息很有必要.提出一种纠错式主动学习成对约束的方法,该算法通过寻找聚类算法本身不能发现的成对约束监督信息,将其引入谱聚类算法,并利用该监督信息来调整谱聚类中点与点之间的距离矩阵.采用双向寻找的方法,将点与点间距离进行排序,使得学习器即使在接收到没有标记的数据时也能进行主动学习,实现了在较少的约束下可得到较好的聚类结果.同时,该算法降低了计算复杂度,解决了聚类过程中成对约束的奇异问题.通过在UCI基准数据集以及人工数据集的实验表明,算法的性能好于相关对比算法,并优于采用随机选取监督信息的谱聚类性能. 展开更多
关键词 半监督聚类 主动式学习 半监督学习 成对约束 谱聚类
原文传递
块对角子空间聚类中成对约束的主动式学习
13
作者 解子奇 王立宏 李嫚 《山东大学学报(工学版)》 CAS CSCD 北大核心 2021年第2期65-73,共9页
针对块对角表示(block diagonal representation, BDR)子空间聚类算法在对子空间重叠的高维数据聚类时效果较差的问题,提出成对约束的块对角子空间聚类(constrained subspace clustering with block diagonal representation, CBDR)算法... 针对块对角表示(block diagonal representation, BDR)子空间聚类算法在对子空间重叠的高维数据聚类时效果较差的问题,提出成对约束的块对角子空间聚类(constrained subspace clustering with block diagonal representation, CBDR)算法,设计主动式学习策略,获取用户提供的少量数据点成对信息,以改进BDR算法的性能,给出CBDR算法的目标函数和求解过程。在测试集上的试验结果表明,CBDR算法的聚类错误率和归一化互信息指标比BDR和SBDR(structured block diagonal representation)算法好,而且主动式选取点对方法优于随机选取点对方法,使用少于5‰的约束信息可降低BDR的聚类错误率达到5%以上。 展开更多
关键词 子空间聚类 主动式学习 成对约束 块对角表示 约束聚类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部