We demonstrate the ability of a combined scanning electron microscope and cathodoluminescence (CL) spectral mapping system to provide important spatially resolved information. The degree of inhomogeneity in spectral...We demonstrate the ability of a combined scanning electron microscope and cathodoluminescence (CL) spectral mapping system to provide important spatially resolved information. The degree of inhomogeneity in spectral output across a multi-quantum well sample is measured using the SEM-CL system as well as measuring the efficiency roll-off with increasing carrier concentration. The effects of low energy electron beam modification on the InGaN/GaN multi quantum wells have also been characterized.展开更多
Next wireless network aims to integrate heterogeneous wireless access networks by sharing wireless resource.The spectral bandwidth mapping concept is proposed to uniformly describe the resource in heterogeneous wirele...Next wireless network aims to integrate heterogeneous wireless access networks by sharing wireless resource.The spectral bandwidth mapping concept is proposed to uniformly describe the resource in heterogeneous wireless networks.The resources of codes and power levels in WCDMA system as well as statistical time slots in WLAN are mapped into equivalent bandwidth which can be allocated in different networks and layers.The equivalent bandwidth is jointly distributed in call admission and vertical handoff control process in an integrated WLAN/WCDMA system to optimize the network utility and guarantee the heterogeneous QoS required by calls.Numerical results show that,when the incoming traffic is moderate,the proposed scheme could receive 5%-10% increase of system revenue compared to the MDP based algorithms.展开更多
Reflectance and emittance spectroscopy in the near-infra red and short-wave infra red offers a rapid, Inexpensive, non-destructive tool for determining the mineralogy of rock and soil samples. Hyperspectral remote sen...Reflectance and emittance spectroscopy in the near-infra red and short-wave infra red offers a rapid, Inexpensive, non-destructive tool for determining the mineralogy of rock and soil samples. Hyperspectral remote sensing has the potential to provide the detailed physico-chemistry (mineralogy, chemistry, morphology) of the earth’s surface. This information is useful for mapping potential host rocks, alteration assemblages and mineral characteristics, in contrast to the older generation of low spectral resolution systems. In the present study EO-1, hyperion data has been used for the delineation of AL+OH minerals. The requirements for extracting bauxites from Hyperion images is to first compensate for atmospheric effects using cross track illumination correction & the log residual calibration model. MNF transformation was applied to reduce the data noise and for extracting the extreme pixels. Some pure pixel end member for the target mineral and the backgrounds were used in this study to account for the spectral angle mapping & matched filtering and the results were validated with the respect of field study.展开更多
Using satellite data for geological mapping beside saving time and reducing coast leads to increased accuracy. In this study, the result of remote sensing techniques has been compared for manifesting geological units....Using satellite data for geological mapping beside saving time and reducing coast leads to increased accuracy. In this study, the result of remote sensing techniques has been compared for manifesting geological units. The study area is limited to 1:25,000 rectangle of Pasab-e-Bala which is located in the northeast of Isfahan and West of Qom-Zefreh fault. This region mainly consists of Devonian and Quaternary sedimentary units. In this study, ASTER and OLI satellite data has been corrected atmospherically and radiometrically. Spectral Analogues method and OLI band combination (652) in RGB image were powerful in distinguishing various rock units. Finally, a new geologic map of the Pasab-e-Bala area was created by integrating the results of remote sensing, previous geological maps and field inspection. It is concluded that the workflow of Landsat 8 image processing, interpretation and ground inspection have a great potential to identify geological formations. According to field data originality, accuracy of the produced map was evaluated through calculating kappa index and overall accuracy and a thematic accuracy of 86% was achieved for geological formations.展开更多
In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan...In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan spectral library(pklib) version 0.1, contains the analysis data of sixty rock samples taken in the Balakot region in Northern Pakistan.The spectral library is implemented as SQLite database. Structure and naming are inspired by the convention system of the ASTER Spectral Library. Usability, application and benefit of the pklib were evaluated and depicted taking two approaches, the multivariate and the spectral based. The spectral information were used to create indices. The indices were applied to Landsat and ASTER data tosupportthespatial delineation of outcropping rock sequences instratigraphic formations. The application of the indices introduced in this paper helps to identify spots where specific lithological characteristics occur. Especially in areas with sparse or missing detailed geological mapping, the spectral discrimination via remote sensing data can speed up the survey. The library can be used not only to support the improvement of factor maps for landslide susceptibility analysis, but also to provide a geoscientific basisto further analyze the lithological spotin numerous regions in the Hindu Kush.展开更多
In this paper, we get a sufficient condition to estimate the essential type of a strongly continuous sendgroup in a Banach space, using oh condition we prove that the essential type of the strongly continuous semigro...In this paper, we get a sufficient condition to estimate the essential type of a strongly continuous sendgroup in a Banach space, using oh condition we prove that the essential type of the strongly continuous semigroup don't increase under the A-smoothing perturbation and establish the spectral mapping theorem for the asymptotic parts of the spectrum of generator and semgroup.展开更多
The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?obs...The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?observed?in?the?same direction to this system with SE-NW trend. The results show that kaolinite alteration trend with Argilic and propylitic veins?is the?same direction with SW-NE faults in this area. Therefore, these faults with these trends can be considered as the mineralization control for determination of the alterations. Different image processing techniques,?such as false color composite?(FCC), band ratios, color ratio composite?(CRC), principal component?analysis?(PCA), Crosta technique, supervised spectral angle mapping?(SAM), are used for?identification of the alteration zones associated with copper mineralization. In this project ASTER?data are process and spectral analysis to fit for recognizing intensity and kind of argillic, propylitic,?philic, and ETM+ data?which?are process and to fit for iron oxide and relation to metal mineralization of the area. For recognizing different alterations of the study area, some chemical and mineralogical analysis data from the samples showed that ASTER data and ETM+ data were?capable of hydrothermal alteration mapping with copper mineralization.?Copper mineralization in the region is in agreement with argillic alteration. SW-NE trending faults controlled the mineralization process.展开更多
The identification of burnt forests and their monitoring provide essential information for the suitable management and conservation of these ecosystems. This research focuses on the use of remote sensing with MODIS se...The identification of burnt forests and their monitoring provide essential information for the suitable management and conservation of these ecosystems. This research focuses on the use of remote sensing with MODIS sensor data in a Mediterranean environment, precisely in the Rif region known for its high occurrence of forest fires and the largest burnt areas in Morocco. It mapped the burnt areas during the summer of 2016 using spectral indices from MODIS images, namely the Normalized Burn Ratio (NBR) and the Burnt Area Index for MODIS (BAIM). Two field surveys were used to calibrate spectral indices and validate the maps. First, a monotemporal analysis using a single pre-fire image determined the appropriate threshold of the spectral indices (BAIM and NBR) for burn detecting. Secondly, a multitemporal method was applied based on dBAIM and dNBR images which represented pre-fire and postfire differences of the BAIM and NBR images, respectively. The results show that separate use of monotemporal postfire and multitemporal methods produced an overestimation of the burnt areas. Finally, we propose a new algorithm combining both methods for burnt area mapping that we name Burnt Area Algorithm. MCD45A1 and MCD64A1 MODIS burnt area products were compared to the proposed algorithm. Validation of the estimated burnt areas using reference data of the Moroccan High Commission for Water, Forests and Fight against Desertification showed satisfactory results using the proposed algorithm, with a determination coefficient of 0.68 and a root mean square error of 44.0 ha.展开更多
Irrespective of several attempts to land use/cover mapping at local, regional, or global scales, mapping of vegetation physiognomic types is limited and challenging. The main objective of the research is to produce an...Irrespective of several attempts to land use/cover mapping at local, regional, or global scales, mapping of vegetation physiognomic types is limited and challenging. The main objective of the research is to produce an accurate nationwide vegetation physiognomic map by using automated machine learning approach with the support of reference data. A time-series of the multi-spectral and multi-indices data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) were exploited along with the land-surface slope data. Reliable reference data of the vegetation physiognomic types were prepared by refining the existing vegetation survey data available in the country. The Random Forests based mapping framework adopted in the research showed high performance (Overall accuracy = 0.82, Kappa coefficient = 0.79) using 148 optimum number of features out of 231 featured used. A nationwide vegetation physiognomic map of year 2013 was produced in the research. The resulted map was compared to the existing MODIS Land Cover Type (MCD12Q1) product of year 2013. A huge difference was found between two maps. Validation with the reference data showed that the MCD12Q1 product did not work satisfactorily in Japan. The outcome of the research highlights the possibility of improving the accuracy of the MCD12Q1 product with special focus on reference data.展开更多
Presently T-wave alternans (TWA) has become a clinical index of non-invasive diagnosis for heart sudden death prediction, and detecting T-wave alternate accurately is particularly important. This paper introduces an a...Presently T-wave alternans (TWA) has become a clinical index of non-invasive diagnosis for heart sudden death prediction, and detecting T-wave alternate accurately is particularly important. This paper introduces an algorithm for detecting TWA using Poincare mapping method which is a technique for nonlinear dynamic systems to display periodic behavior. Sample series of beat to beat cycles were selected to prepare Poincare mapping method. Vector Angle Index (VAI), which is the mean of the difference between θi (the angle between the line connecting the i point to the origin and the X axis) and 45 degrees was used to present the presence or absence of TWA. The value of 0.9 rad ≤ VAI ≤ 1.03 rad is accepted as a level determinative for presence of TWA. VAI via Poincare mapping method (PM) is used for correlation analysis with T-wave alternans voltage (Vtwa) by way of the spectral method (SM). The cross-correlation coefficient between Vtwa and VAI is γ = 0.8601. The algorithm can identify the absence and presence of TWA accurately and provide idea for further study of TWA-PM.展开更多
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, th...The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.展开更多
Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resu...Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.展开更多
This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of...This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.展开更多
In the Saharian domain, the Tarfaya-Laayoune coastal basin developed in a stable passive margin, where asymmetrical sedimentation increase from East to West and reach a sediment stack of about 14 kilometers. However, ...In the Saharian domain, the Tarfaya-Laayoune coastal basin developed in a stable passive margin, where asymmetrical sedimentation increase from East to West and reach a sediment stack of about 14 kilometers. However, the morphology of the studied area corresponds to a vast plateau (hamada) presenting occasional major reliefs. For this purpose, remote sensing approach has been applied to find the best approaches for truthful lithological mapping. The two supervised classification methods by machine learning (Artificial Neural Network and Spectral Information Divergence) have been evaluated for a most accurate classification to be used for our lithofacies mapping. The latest geological maps and RGB images were used for pseudo-color groups to identify important areas and collect the ROIs that will serve as facilities samples for the classifications. The results obtained showed a clear distinction between the various formation units, and very close results to the field reality in the ANN classification of the studied area. Thus, the ANN method is more accurate with an overall accuracy of 92.56% and a Kappa coefficient is 0.9143.展开更多
文摘We demonstrate the ability of a combined scanning electron microscope and cathodoluminescence (CL) spectral mapping system to provide important spatially resolved information. The degree of inhomogeneity in spectral output across a multi-quantum well sample is measured using the SEM-CL system as well as measuring the efficiency roll-off with increasing carrier concentration. The effects of low energy electron beam modification on the InGaN/GaN multi quantum wells have also been characterized.
基金Supported by the National Natural Science Foundation of China (No. 60772061)the Research Achievements Industrialization Project (No. JHB2011-10)
文摘Next wireless network aims to integrate heterogeneous wireless access networks by sharing wireless resource.The spectral bandwidth mapping concept is proposed to uniformly describe the resource in heterogeneous wireless networks.The resources of codes and power levels in WCDMA system as well as statistical time slots in WLAN are mapped into equivalent bandwidth which can be allocated in different networks and layers.The equivalent bandwidth is jointly distributed in call admission and vertical handoff control process in an integrated WLAN/WCDMA system to optimize the network utility and guarantee the heterogeneous QoS required by calls.Numerical results show that,when the incoming traffic is moderate,the proposed scheme could receive 5%-10% increase of system revenue compared to the MDP based algorithms.
文摘Reflectance and emittance spectroscopy in the near-infra red and short-wave infra red offers a rapid, Inexpensive, non-destructive tool for determining the mineralogy of rock and soil samples. Hyperspectral remote sensing has the potential to provide the detailed physico-chemistry (mineralogy, chemistry, morphology) of the earth’s surface. This information is useful for mapping potential host rocks, alteration assemblages and mineral characteristics, in contrast to the older generation of low spectral resolution systems. In the present study EO-1, hyperion data has been used for the delineation of AL+OH minerals. The requirements for extracting bauxites from Hyperion images is to first compensate for atmospheric effects using cross track illumination correction & the log residual calibration model. MNF transformation was applied to reduce the data noise and for extracting the extreme pixels. Some pure pixel end member for the target mineral and the backgrounds were used in this study to account for the spectral angle mapping & matched filtering and the results were validated with the respect of field study.
文摘Using satellite data for geological mapping beside saving time and reducing coast leads to increased accuracy. In this study, the result of remote sensing techniques has been compared for manifesting geological units. The study area is limited to 1:25,000 rectangle of Pasab-e-Bala which is located in the northeast of Isfahan and West of Qom-Zefreh fault. This region mainly consists of Devonian and Quaternary sedimentary units. In this study, ASTER and OLI satellite data has been corrected atmospherically and radiometrically. Spectral Analogues method and OLI band combination (652) in RGB image were powerful in distinguishing various rock units. Finally, a new geologic map of the Pasab-e-Bala area was created by integrating the results of remote sensing, previous geological maps and field inspection. It is concluded that the workflow of Landsat 8 image processing, interpretation and ground inspection have a great potential to identify geological formations. According to field data originality, accuracy of the produced map was evaluated through calculating kappa index and overall accuracy and a thematic accuracy of 86% was achieved for geological formations.
文摘In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan spectral library(pklib) version 0.1, contains the analysis data of sixty rock samples taken in the Balakot region in Northern Pakistan.The spectral library is implemented as SQLite database. Structure and naming are inspired by the convention system of the ASTER Spectral Library. Usability, application and benefit of the pklib were evaluated and depicted taking two approaches, the multivariate and the spectral based. The spectral information were used to create indices. The indices were applied to Landsat and ASTER data tosupportthespatial delineation of outcropping rock sequences instratigraphic formations. The application of the indices introduced in this paper helps to identify spots where specific lithological characteristics occur. Especially in areas with sparse or missing detailed geological mapping, the spectral discrimination via remote sensing data can speed up the survey. The library can be used not only to support the improvement of factor maps for landslide susceptibility analysis, but also to provide a geoscientific basisto further analyze the lithological spotin numerous regions in the Hindu Kush.
文摘In this paper, we get a sufficient condition to estimate the essential type of a strongly continuous sendgroup in a Banach space, using oh condition we prove that the essential type of the strongly continuous semigroup don't increase under the A-smoothing perturbation and establish the spectral mapping theorem for the asymptotic parts of the spectrum of generator and semgroup.
文摘The Kehdolan area is located at 20 kilometers to the?south-east of Dozdozan Town (Eastern Azarbaijan Province). According to structural geology, volconic rocks are situated in Alborz-Azarbyjan zone, and faults?are?observed?in?the?same direction to this system with SE-NW trend. The results show that kaolinite alteration trend with Argilic and propylitic veins?is the?same direction with SW-NE faults in this area. Therefore, these faults with these trends can be considered as the mineralization control for determination of the alterations. Different image processing techniques,?such as false color composite?(FCC), band ratios, color ratio composite?(CRC), principal component?analysis?(PCA), Crosta technique, supervised spectral angle mapping?(SAM), are used for?identification of the alteration zones associated with copper mineralization. In this project ASTER?data are process and spectral analysis to fit for recognizing intensity and kind of argillic, propylitic,?philic, and ETM+ data?which?are process and to fit for iron oxide and relation to metal mineralization of the area. For recognizing different alterations of the study area, some chemical and mineralogical analysis data from the samples showed that ASTER data and ETM+ data were?capable of hydrothermal alteration mapping with copper mineralization.?Copper mineralization in the region is in agreement with argillic alteration. SW-NE trending faults controlled the mineralization process.
基金the Faculty of Science and Technology of Beni Mellal for their logistical and financial support for the PhD project No. RNES44/13
文摘The identification of burnt forests and their monitoring provide essential information for the suitable management and conservation of these ecosystems. This research focuses on the use of remote sensing with MODIS sensor data in a Mediterranean environment, precisely in the Rif region known for its high occurrence of forest fires and the largest burnt areas in Morocco. It mapped the burnt areas during the summer of 2016 using spectral indices from MODIS images, namely the Normalized Burn Ratio (NBR) and the Burnt Area Index for MODIS (BAIM). Two field surveys were used to calibrate spectral indices and validate the maps. First, a monotemporal analysis using a single pre-fire image determined the appropriate threshold of the spectral indices (BAIM and NBR) for burn detecting. Secondly, a multitemporal method was applied based on dBAIM and dNBR images which represented pre-fire and postfire differences of the BAIM and NBR images, respectively. The results show that separate use of monotemporal postfire and multitemporal methods produced an overestimation of the burnt areas. Finally, we propose a new algorithm combining both methods for burnt area mapping that we name Burnt Area Algorithm. MCD45A1 and MCD64A1 MODIS burnt area products were compared to the proposed algorithm. Validation of the estimated burnt areas using reference data of the Moroccan High Commission for Water, Forests and Fight against Desertification showed satisfactory results using the proposed algorithm, with a determination coefficient of 0.68 and a root mean square error of 44.0 ha.
文摘Irrespective of several attempts to land use/cover mapping at local, regional, or global scales, mapping of vegetation physiognomic types is limited and challenging. The main objective of the research is to produce an accurate nationwide vegetation physiognomic map by using automated machine learning approach with the support of reference data. A time-series of the multi-spectral and multi-indices data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) were exploited along with the land-surface slope data. Reliable reference data of the vegetation physiognomic types were prepared by refining the existing vegetation survey data available in the country. The Random Forests based mapping framework adopted in the research showed high performance (Overall accuracy = 0.82, Kappa coefficient = 0.79) using 148 optimum number of features out of 231 featured used. A nationwide vegetation physiognomic map of year 2013 was produced in the research. The resulted map was compared to the existing MODIS Land Cover Type (MCD12Q1) product of year 2013. A huge difference was found between two maps. Validation with the reference data showed that the MCD12Q1 product did not work satisfactorily in Japan. The outcome of the research highlights the possibility of improving the accuracy of the MCD12Q1 product with special focus on reference data.
文摘Presently T-wave alternans (TWA) has become a clinical index of non-invasive diagnosis for heart sudden death prediction, and detecting T-wave alternate accurately is particularly important. This paper introduces an algorithm for detecting TWA using Poincare mapping method which is a technique for nonlinear dynamic systems to display periodic behavior. Sample series of beat to beat cycles were selected to prepare Poincare mapping method. Vector Angle Index (VAI), which is the mean of the difference between θi (the angle between the line connecting the i point to the origin and the X axis) and 45 degrees was used to present the presence or absence of TWA. The value of 0.9 rad ≤ VAI ≤ 1.03 rad is accepted as a level determinative for presence of TWA. VAI via Poincare mapping method (PM) is used for correlation analysis with T-wave alternans voltage (Vtwa) by way of the spectral method (SM). The cross-correlation coefficient between Vtwa and VAI is γ = 0.8601. The algorithm can identify the absence and presence of TWA accurately and provide idea for further study of TWA-PM.
文摘The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.
基金Supported by the Zimin Institute for Engineering Solutions Advancing Better Lives。
文摘Background Functional mapping, despite its proven efficiency, suffers from a “chicken or egg” scenario, in that, poor spatial features lead to inadequate spectral alignment and vice versa during training, often resulting in slow convergence, high computational costs, and learning failures, particularly when small datasets are used. Methods A novel method is presented for dense-shape correspondence, whereby the spatial information transformed by neural networks is combined with the projections onto spectral maps to overcome the “chicken or egg” challenge by selectively sampling only points with high confidence in their alignment. These points then contribute to the alignment and spectral loss terms, boosting training, and accelerating convergence by a factor of five. To ensure full unsupervised learning, the Gromov–Hausdorff distance metric was used to select the points with the maximal alignment score displaying most confidence. Results The effectiveness of the proposed approach was demonstrated on several benchmark datasets, whereby results were reported as superior to those of spectral and spatial-based methods. Conclusions The proposed method provides a promising new approach to dense-shape correspondence, addressing the key challenges in the field and offering significant advantages over the current methods, including faster convergence, improved accuracy, and reduced computational costs.
文摘This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.
文摘In the Saharian domain, the Tarfaya-Laayoune coastal basin developed in a stable passive margin, where asymmetrical sedimentation increase from East to West and reach a sediment stack of about 14 kilometers. However, the morphology of the studied area corresponds to a vast plateau (hamada) presenting occasional major reliefs. For this purpose, remote sensing approach has been applied to find the best approaches for truthful lithological mapping. The two supervised classification methods by machine learning (Artificial Neural Network and Spectral Information Divergence) have been evaluated for a most accurate classification to be used for our lithofacies mapping. The latest geological maps and RGB images were used for pseudo-color groups to identify important areas and collect the ROIs that will serve as facilities samples for the classifications. The results obtained showed a clear distinction between the various formation units, and very close results to the field reality in the ANN classification of the studied area. Thus, the ANN method is more accurate with an overall accuracy of 92.56% and a Kappa coefficient is 0.9143.