The research was conducted to determine the relationships of protein and starch accumulation dynamics in grains of wheat to post-heading leaf SPAD values and canopy spectral reflectance. The results showed that leaf n...The research was conducted to determine the relationships of protein and starch accumulation dynamics in grains of wheat to post-heading leaf SPAD values and canopy spectral reflectance. The results showed that leaf nitrogen accumulation was exponentially related to leaf SPAD values and linearly related to canopy spectral reflectance, and that there was negative linear relationship between leaf nitrogen accumulation and grain protein accumulation, but positive linear relationship between post-heading leaf nitrogen transloca-tion and grain protein accumulation at maturity. In addition, leaf SPAD values were parabolically related with and ratio indices R(l 500,610)and R(l 220,560)were exponentially related with protein and starch accumulation in grains. These results indicate that leaf SPAD values and canopy spectral reflectance should be good indicators of quality formation dynamics in wheat grains.展开更多
Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced tech...Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity.展开更多
Large-scale farming of agriculture crops requires real-time detection of disease for field pest management. Hyperspectral remote sensing data generally have high spectral resolution, which could be very useful for det...Large-scale farming of agriculture crops requires real-time detection of disease for field pest management. Hyperspectral remote sensing data generally have high spectral resolution, which could be very useful for detecting disease stress in green vegetation at the leaf and canopy levels. In this study, hyperspectral reflectances of rice in the laboratory and field were measured to characterize the spectral regions and wavebands, which were the most sensitive to rice brown spot infected by Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann). Leaf reflectance increased at the ranges of 450 to 500 nm and 630 to 680 nm with the increasing percentage of infected leaf surface, and decreased at the ranges of 520 to 580 nm, 760 to 790 nm, 1550 to 1750 nm, and 2080 to 2350 nm with the increasing percentage of infected leaf surface respectively. The sensitivity analysis and derivative technique were used to select the sensitive wavebands for the detection of rice brown spot infected by B. oryzae. Ratios of rice leaf reflectance were evaluated as indicators of brown spot. R669/R746 (the reflectance at 669 nm divided by the reflectance at 746 nm, the following ratios may be deduced by analogy), R702/R718, R692/R530, R692/R732, R535/R746, R521/R718, and R569/R718 increased significantly as the incidence of rice brown spot increased regardless of whether it's at the leaf or canopy level. R702/R718, R692/R530, R692/R732 were the best three ratios for estimating the disease severity of rice brown spot at the leaf and canopy levels. This result not only confirms the capability of hyperspectral remote sensing data in characterizing crop disease for precision pest management in the real world, but also testifies that the ratios of crop reflectance is a useful method to estimate crop disease severity.展开更多
A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical ref...A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.展开更多
Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen...Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen and carbon cycles in the atmosphere. This study aimed to assess maize CNC and CCC using canopy hyperspectral information and uninformative variable elimination(UVE). Vegetation indices(VIs) and wavelet functions were adopted for estimating CNC and CCC under varying water and nitrogen regimes. Linear, nonlinear, and partial least squares(PLS) regression models were fitted to VIs and wavelet functions to estimate CNC and CCC, and were evaluated for their prediction accuracy.UVE was used to eliminate uninformative variables, improve the prediction accuracy of the models, and simplify the PLS regression models(UVE-PLS). For estimating CNC and CCC, the normalized difference vegetation index(NDVI, based on red edge and NIR wavebands) yielded the highest correlation coefficients(r > 0.88). PLS regression models showed the lowest root mean square error(RMSE) among all models. However, PLS regression models required nine VIs and four wavelet functions, increasing their complexity. UVE was used to retain valid spectral parameters and optimize the PLS regression models.UVE-PLS regression models improved validation accuracy and resulted in more accurate CNC and CCC than the PLS regression models. Thus, canopy spectral reflectance integrated with UVE-PLS can accurately reflect maize leaf nitrogen and carbon status.展开更多
To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),...To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).展开更多
Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of Jun...Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of June 9 through September 27, 2006, we investigated the temporal and spatial variations in surface albedo and spectral reflectance on the glacier. At site H1, the daily mean surface albedos fluctuated between 0.233 and 0.866, which were significantly affected by the air temperature on the glacier. It was found that the albedos clearly showed a diurnal cycle with the lowest value at noon at the two observation sites over the study period, and the difference of albedos between the upper site H2 and the lower site H1 also showed diurnal cycle but with the highest value at noon. The reflectance on the glacier was higher in the ultraviolet (0.28–0.4 μm) and visible (0.4–0.76 μm) wavelengths, lower in the near infrared wavelength (0.76–3 μm), which is quite contrary to the spectral reflectance on other ground surfaces. At the two observation sites, the spectral reflectance declined in all wavelengths with the ablation of snow generally. However, it declined drastically in ultraviolet (0.28–0.4 μm) and 0.6–0.7 μm wavelength, and declined less in 0.4–0.5 μm wavelength. On fresh snow surface, the spectral reflectance had the high values of 0.983 and 0.815 in the ultraviolet and visible (0.4–0.76 μm) wavelengths, respectively; but it had a relatively lower value of 0.671 in near infrared (0.76–3 μm) wavelengths. However, on dirty and melting ice surfaces, the reflectance had the very low values of 0.305 and 0.256 in the ultraviolet and visible wavelengths, with the lowest value of 0.082 in near infrared wavelengths. The spectral reflectance also showed a diurnal cycle like that of albedo. The diurnal variations of spectral reflectance on snow surface in ultraviolet and visible wavelength changed to a greater degree than that on ice surface. The diurnal variation curves were asymmetrical before and after the local noontime, but the curves on ice surfaces in every wavelength were relatively flat and symmetrical. Especially, the surface reflectance in near infrared wavelength was flat and symmetry on both snow and ice surfaces. The studies of relations between the snow albedo and snow density and impurity, and the impact of glacier albedo on the glacier runoff are also described in this paper.展开更多
Spectral resolution effects on the lineshape of photoreflectance(PR)spectroscopy is experimentally investigated.PR measurements are performed on HgCdTe epilayer and InAs/GaAs quantum dot(QD)low-dimensional samples at ...Spectral resolution effects on the lineshape of photoreflectance(PR)spectroscopy is experimentally investigated.PR measurements are performed on HgCdTe epilayer and InAs/GaAs quantum dot(QD)low-dimensional samples at low temperatures in a spectral resolution range from 8 to 0.5meV.The results indicate that the resolution affects not only the identification of narrow PR features,but also the determination of critical-point energies of identified PR features,and a spectral resolution of as high as 0.5meV may be necessary for low-dimensional semiconductors.The spectral resolution is indeed a crucial parameter,for which the step-scan Fourier transform infrared spectrometer-based PR technique is preferable.展开更多
Soil surface roughness, denoted by the root mean square height(RMSH), and soil moisture(SM) are critical factors that affect the accuracy of quantitative remote sensing research due to their combined influence on spec...Soil surface roughness, denoted by the root mean square height(RMSH), and soil moisture(SM) are critical factors that affect the accuracy of quantitative remote sensing research due to their combined influence on spectral reflectance(SR). In regards to this issue, three SM levels and four RMSH levels were artificially designed in this study; a total of 12 plots was used, each plot had a size of 3 m × 3 m. Eight spectral observations were conducted from 14 to 30 October 2017 to investigate the correlation between RMSH, SM, and SR. On this basis, 6 commonly used bands of optical satellite sensors were selected in this study, which are red(675 nm), green(555 nm), blue(485 nm), near infrared(845 nm), shortwave infrared 1(1600 nm), and shortwave infrared 2(2200 nm). A negative correlation was found between SR and RMSH, and between SR and SM. The bands with higher coefficient of determination R^2 values were selected for stepwise multiple nonlinear regression analysis. Four characterized bands(i.e., blue, green, near infrared, and shortwave infrared 2) were chosen as the independent variables to estimate SM with R^2 and root mean square error(RMSE) values equal to 0.62 and 2.6%, respectively. Similarly, the four bands(green, red, near infrared, and shortwave infrared 1) were used to estimate RMSH with R^2 and RMSE values equal to 0.48 and 0.69 cm, respectively. These results indicate that the method used is not only suitable for estimating SM but can also be extended to the prediction of RMSH. Finally, the evaluation approach presented in this paper highly restores the real situation of the natural farmland surface on the one hand, and obtains high precision values of SM and RMSH on the other. The method can be further applied to the prediction of farmland SM and RMSH based on satellite and unmanned aerial vehicle(UAV) optical imagery.展开更多
Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiomet...Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) under laboratory condition. Partial least square regression (PLSR) models were constructed for predicting soil metal concentrations. The data pre-processing methods, first and second derivatives (FD and SD), baseline correction (BC), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR), were used for the spectral reflectance data pretreatments. Then, the prediction results were evaluated by relative root mean square error (RRMSE) and coefficients of determination (R 2 ). According to the criteria of minimal RRMSE and maximal R 2 , the PLSR models with the FD pretreatment (RRMSE = 0.24, R 2 = 0.61), SNV pretreatment (RRMSE = 0.08, R 2 = 0.78), and BC-pretreatment (RRMSE = 0.20, R 2 = 0.41) were considered as the final models for predicting As, Fe, and Cu, respectively. Wavebands at around 460, 1 400, 1 900, and 2 200 nm were selected as important spectral variables to construct final models. In conclusion, concentrations of heavy metals in contaminated soils could be indirectly assessed by soil spectra according to the correlation between the spectrally featureless components and Fe; therefore, spectral reflectance would be an alternative tool for monitoring soil heavy metals contamination.展开更多
The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related ...The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns.展开更多
The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a m...The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.展开更多
Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitati...Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitative relationship between soil reflectance and its moisture, especially in the case of black soils in northeast China. A new moisture adjusting method was developed to obtain soil reflectance with a smaller moisture interval to describe the quantitative relationship between soil reflectance and moisture. For the soil samples with moisture contents ranging from air-dry to saturated, the changes in soil reflectance with soil moisture can be depicted using a cubic equation. Both moisture threshold (MT) and moisture inflexion (MI) of soil reflectance can also be determined by the equation. When the moisture range was smaller than MT, soil reflectance can be simulated with a linear model. However, for samples with different soil organic matter (OM), the parameters of the linear model varied regularly with the OM content. Based on their relationship, the soil moisture can be estimated from soil reflectance in the black soil region.展开更多
Soil organic matter(SOM) is an important parameter related to soil nutrient and miscellaneous ecosystem services. This paper attempts to improve the performance of traditional partial least square regression(PLSR) mod...Soil organic matter(SOM) is an important parameter related to soil nutrient and miscellaneous ecosystem services. This paper attempts to improve the performance of traditional partial least square regression(PLSR) model by considering the spatial autocorrelation and soil forming factors. Surface soil samples(n = 180) were collected from Honghu City located in the middle of Jianghan Plain, China. The visible and near infrared(VNIR) spectra and six environmental factors(elevation, land use types, roughness, relief amplitude, enhanced vegetation index, and land surface water index) were used as the auxiliary variables to construct the multiple linear regression(MLR), PLSR and geographically weighted regression(GWR) models. Results showed that: 1) the VNIR spectra can increase about 39.62% prediction accuracy than the environmental factors in predicting SOM; 2) the comprehensive variables of VNIR spectra and the environmental factors can improve about 5.78% and 44.90% relative to soil spectral models and soil environmental models, respectively; 3) the spatial model(GWR) can improve about 3.28% accuracy than MLR and PLSR. Our results suggest that the combination of spectral reflectance and the environmental variables can be used as the suitable auxiliary variables in predicting SOM, and GWR is a promising model for predicting soil properties.展开更多
By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser be...By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.展开更多
From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectra...From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.展开更多
Background: According to the diversification of the health needs and the expansion of health disparities, it is necessary to raise their reflective practice skills so that PHNs present more appropriate activities. The...Background: According to the diversification of the health needs and the expansion of health disparities, it is necessary to raise their reflective practice skills so that PHNs present more appropriate activities. The purpose of this study was to elucidate the realities of reflective practice skills among public health nurses in Japan and identify related factors. Methods: This study covered 1725 public health nurses in the Chugoku/Shikoku area. We conducted an anonymous self-completed questionnaire survey. As reflective practice skills (RPS), we adopted the six components of the six cycles of the Gibbs reflective model. We used the 20 criteria of the Scale for Practical Competence (SPC). We set 25 learning history/daily lifestyle items. The study plan was approved by the Ethics Committee of Okayama University. Results: We analyzed the 962 (55.8%) valid responses. Although years of experience as a public health nurse was highly correlated with practical skills as measured by SPC, with a correlation coefficient of 0.627, it was not closely related with RPS, with a correlation coefficient as low as 0.129. A logistic regression analysis of the eight learning history items and six daily lifestyle items associated with RPS, with the introduction of the high/low RPS groups as dependent variables, showed a convergence to five factors (odds ratio of 1.38 - 2.29). Conclusions: Going forward, we will need to consider how to accumulate learning on a daily basis and how to include positive health practice in PHN education, in connection with exploring the curriculum and method of training.展开更多
This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is prop...This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.展开更多
To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. I...To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed me-thod, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density func-tions of the endmembers in the current area, which works as a type of constraint in the iterative spectral unmixing process. Experimental results demonstrate the effectivity and efficiency of the proposed method both for synthetic and real hyperspectral images, and it can provide a useful tool for spatial correlation and comparation analysis between ad-jacent or similar areas.展开更多
We investigate the best performance for linear feedback control systems in the case that plant uncertainty is to be considered. First, we define an average integral square criterion of tracking error over a class of s...We investigate the best performance for linear feedback control systems in the case that plant uncertainty is to be considered. First, we define an average integral square criterion of tracking error over a class of stochastic model errors. By utilizing spectral factorization to minimize the performance index, we derive an optimal controller design method and further study best performance in the presence of stochastic perturbation. The results can be used to evaluate optimal performance in practical control system designs.展开更多
基金supported by the National High Tech R&D Program,China(863 Program,2002AA243011)the National Natural Science Foundation of China(30030090)the Natural Science Foundation of Jiangsu Province,China(BK2003079).
文摘The research was conducted to determine the relationships of protein and starch accumulation dynamics in grains of wheat to post-heading leaf SPAD values and canopy spectral reflectance. The results showed that leaf nitrogen accumulation was exponentially related to leaf SPAD values and linearly related to canopy spectral reflectance, and that there was negative linear relationship between leaf nitrogen accumulation and grain protein accumulation, but positive linear relationship between post-heading leaf nitrogen transloca-tion and grain protein accumulation at maturity. In addition, leaf SPAD values were parabolically related with and ratio indices R(l 500,610)and R(l 220,560)were exponentially related with protein and starch accumulation in grains. These results indicate that leaf SPAD values and canopy spectral reflectance should be good indicators of quality formation dynamics in wheat grains.
基金supported by the International Platform for Dryland Research and Education, Tottori University and the National Key R&D Program of China (2016YFC0500909)
文摘Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2006AA10Z203) the National Natural Science Foundation of China (Grant No. 40571115).
文摘Large-scale farming of agriculture crops requires real-time detection of disease for field pest management. Hyperspectral remote sensing data generally have high spectral resolution, which could be very useful for detecting disease stress in green vegetation at the leaf and canopy levels. In this study, hyperspectral reflectances of rice in the laboratory and field were measured to characterize the spectral regions and wavebands, which were the most sensitive to rice brown spot infected by Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann). Leaf reflectance increased at the ranges of 450 to 500 nm and 630 to 680 nm with the increasing percentage of infected leaf surface, and decreased at the ranges of 520 to 580 nm, 760 to 790 nm, 1550 to 1750 nm, and 2080 to 2350 nm with the increasing percentage of infected leaf surface respectively. The sensitivity analysis and derivative technique were used to select the sensitive wavebands for the detection of rice brown spot infected by B. oryzae. Ratios of rice leaf reflectance were evaluated as indicators of brown spot. R669/R746 (the reflectance at 669 nm divided by the reflectance at 746 nm, the following ratios may be deduced by analogy), R702/R718, R692/R530, R692/R732, R535/R746, R521/R718, and R569/R718 increased significantly as the incidence of rice brown spot increased regardless of whether it's at the leaf or canopy level. R702/R718, R692/R530, R692/R732 were the best three ratios for estimating the disease severity of rice brown spot at the leaf and canopy levels. This result not only confirms the capability of hyperspectral remote sensing data in characterizing crop disease for precision pest management in the real world, but also testifies that the ratios of crop reflectance is a useful method to estimate crop disease severity.
基金supported by the Rural Development Administration(PJ013821032020),Republic of Korea。
文摘A spectral reflectance sensor(SRS)fixed on the near-surface ground was developed to support the continuous monitoring of vegetation indices such as the normalized difference vegetation index(NDVI)and photochemical reflectance index(PRI).NDVI is useful for indicating crop growth/phenology,whereas PRI was developed for observing physiological conditions.Thus,the seasonal change patterns of NDVI and PRI are two valuable pieces of information in a crop-monitoring system.However,capturing the seasonal patterns is considered challenging because the vegetation index values estimated by the reflection from vegetation are often governed by meteorological conditions,such as solar irradiance and precipitation.Further,unlike growth/phenology,the physiological condition has diurnal changes as well as seasonal characteristics.This study proposed a novel filtering method for extracting the seasonal signals of SRS-based NDVI and PRI in paddy rice,barley,and garlic.First,the measurement accuracy of SRSs was compared with handheld spectrometers,and the R^(2)values between the two devices were 0.96 and 0.81 for NDVI and PRI,respectively.Second,the experimental study of threshold criteria with respect to meteorological variables(i.e.,insolation,cloudiness,sunshine duration,and precipitation)was conducted,and sunshine duration was the most useful one for excluding distorted values of the vegetation indices.After data processing based on sunshine duration,the R^(2)values between the measured vegetation indices and the extracted seasonal signals of vegetation indices increased by approximately 0.002–0.004(NDVI)and 0.065–0.298(PRI)on the three crops,and the seasonal signals of vegetation indices became noticeably improved.This method will contribute to an agricultural monitoring system by identifying the seasonal changes in crop growth and physiological conditions.
基金supported by the National Key Research and Development Program of China (2016YFD0300602)China Agricultural Research System (CARS-04-PS19)Chengdu Science and Technology Project (2020-YF09-00033-SN)。
文摘Assessing canopy nitrogen content(CNC) and canopy carbon content(CCC) of maize by hyperspectral remote sensing data permits estimating cropland productivity, protecting farmland ecology, and investigating the nitrogen and carbon cycles in the atmosphere. This study aimed to assess maize CNC and CCC using canopy hyperspectral information and uninformative variable elimination(UVE). Vegetation indices(VIs) and wavelet functions were adopted for estimating CNC and CCC under varying water and nitrogen regimes. Linear, nonlinear, and partial least squares(PLS) regression models were fitted to VIs and wavelet functions to estimate CNC and CCC, and were evaluated for their prediction accuracy.UVE was used to eliminate uninformative variables, improve the prediction accuracy of the models, and simplify the PLS regression models(UVE-PLS). For estimating CNC and CCC, the normalized difference vegetation index(NDVI, based on red edge and NIR wavebands) yielded the highest correlation coefficients(r > 0.88). PLS regression models showed the lowest root mean square error(RMSE) among all models. However, PLS regression models required nine VIs and four wavelet functions, increasing their complexity. UVE was used to retain valid spectral parameters and optimize the PLS regression models.UVE-PLS regression models improved validation accuracy and resulted in more accurate CNC and CCC than the PLS regression models. Thus, canopy spectral reflectance integrated with UVE-PLS can accurately reflect maize leaf nitrogen and carbon status.
基金Project supported by the National Natural Science Foundation of China (No. 40271078)the Basic Research Program of Science and Technology Department of China (No. 2003DEA2C010-13)
文摘To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).
基金Financial support was given by the CAS International Partnership Project "The Basic Research for Water Issues of Inland River Basin in Arid Region," (CXTD-Z2005-2)National Natural Science Funds of China for Distinguished Young Scholar (40525001)National Basic Research Program of China (2005CB422003)
文摘Based on the data observed at two sites (site H1, 4,473 m a.s.l., and site H2, 4,696 m a.s.l.) on Qiyi Glacier in Qilian Mountains, China, by automatic weather station and spectral pyranometer during the period of June 9 through September 27, 2006, we investigated the temporal and spatial variations in surface albedo and spectral reflectance on the glacier. At site H1, the daily mean surface albedos fluctuated between 0.233 and 0.866, which were significantly affected by the air temperature on the glacier. It was found that the albedos clearly showed a diurnal cycle with the lowest value at noon at the two observation sites over the study period, and the difference of albedos between the upper site H2 and the lower site H1 also showed diurnal cycle but with the highest value at noon. The reflectance on the glacier was higher in the ultraviolet (0.28–0.4 μm) and visible (0.4–0.76 μm) wavelengths, lower in the near infrared wavelength (0.76–3 μm), which is quite contrary to the spectral reflectance on other ground surfaces. At the two observation sites, the spectral reflectance declined in all wavelengths with the ablation of snow generally. However, it declined drastically in ultraviolet (0.28–0.4 μm) and 0.6–0.7 μm wavelength, and declined less in 0.4–0.5 μm wavelength. On fresh snow surface, the spectral reflectance had the high values of 0.983 and 0.815 in the ultraviolet and visible (0.4–0.76 μm) wavelengths, respectively; but it had a relatively lower value of 0.671 in near infrared (0.76–3 μm) wavelengths. However, on dirty and melting ice surfaces, the reflectance had the very low values of 0.305 and 0.256 in the ultraviolet and visible wavelengths, with the lowest value of 0.082 in near infrared wavelengths. The spectral reflectance also showed a diurnal cycle like that of albedo. The diurnal variations of spectral reflectance on snow surface in ultraviolet and visible wavelength changed to a greater degree than that on ice surface. The diurnal variation curves were asymmetrical before and after the local noontime, but the curves on ice surfaces in every wavelength were relatively flat and symmetrical. Especially, the surface reflectance in near infrared wavelength was flat and symmetry on both snow and ice surfaces. The studies of relations between the snow albedo and snow density and impurity, and the impact of glacier albedo on the glacier runoff are also described in this paper.
基金Supported by the Science and Technology Commission of Shanghai Municipality(STCSM)under Grant Nos 09JC1415600 and 10QA1407800and the National Natural Science Foundation of China under Grant No 10927404.
文摘Spectral resolution effects on the lineshape of photoreflectance(PR)spectroscopy is experimentally investigated.PR measurements are performed on HgCdTe epilayer and InAs/GaAs quantum dot(QD)low-dimensional samples at low temperatures in a spectral resolution range from 8 to 0.5meV.The results indicate that the resolution affects not only the identification of narrow PR features,but also the determination of critical-point energies of identified PR features,and a spectral resolution of as high as 0.5meV may be necessary for low-dimensional semiconductors.The spectral resolution is indeed a crucial parameter,for which the step-scan Fourier transform infrared spectrometer-based PR technique is preferable.
基金Under the auspices of the Excellent Youth Talent Project of Jilin Science and Technology Development Program(No.20170520078JH)Science and Technology Basic Work of Science and Technology(No.2014FY210800–4)National Natural Science Foundation of China(No.41601382)
文摘Soil surface roughness, denoted by the root mean square height(RMSH), and soil moisture(SM) are critical factors that affect the accuracy of quantitative remote sensing research due to their combined influence on spectral reflectance(SR). In regards to this issue, three SM levels and four RMSH levels were artificially designed in this study; a total of 12 plots was used, each plot had a size of 3 m × 3 m. Eight spectral observations were conducted from 14 to 30 October 2017 to investigate the correlation between RMSH, SM, and SR. On this basis, 6 commonly used bands of optical satellite sensors were selected in this study, which are red(675 nm), green(555 nm), blue(485 nm), near infrared(845 nm), shortwave infrared 1(1600 nm), and shortwave infrared 2(2200 nm). A negative correlation was found between SR and RMSH, and between SR and SM. The bands with higher coefficient of determination R^2 values were selected for stepwise multiple nonlinear regression analysis. Four characterized bands(i.e., blue, green, near infrared, and shortwave infrared 2) were chosen as the independent variables to estimate SM with R^2 and root mean square error(RMSE) values equal to 0.62 and 2.6%, respectively. Similarly, the four bands(green, red, near infrared, and shortwave infrared 1) were used to estimate RMSH with R^2 and RMSE values equal to 0.48 and 0.69 cm, respectively. These results indicate that the method used is not only suitable for estimating SM but can also be extended to the prediction of RMSH. Finally, the evaluation approach presented in this paper highly restores the real situation of the natural farmland surface on the one hand, and obtains high precision values of SM and RMSH on the other. The method can be further applied to the prediction of farmland SM and RMSH based on satellite and unmanned aerial vehicle(UAV) optical imagery.
基金Project supported by the National Natural Science Foundation of China (No. 40571130)the Natural Science Foundation of Shanghai, China (No. 07ZR14032)
文摘Concentrations of Iron (Fe), As, and Cu in soil samples from the fields near the Baoshan Mine in Hunan Province, China, were analyzed and soil spectral reflectance was measured with an ASD FieldSpec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) under laboratory condition. Partial least square regression (PLSR) models were constructed for predicting soil metal concentrations. The data pre-processing methods, first and second derivatives (FD and SD), baseline correction (BC), standard normal variate (SNV), multiplicative scatter correction (MSC), and continuum removal (CR), were used for the spectral reflectance data pretreatments. Then, the prediction results were evaluated by relative root mean square error (RRMSE) and coefficients of determination (R 2 ). According to the criteria of minimal RRMSE and maximal R 2 , the PLSR models with the FD pretreatment (RRMSE = 0.24, R 2 = 0.61), SNV pretreatment (RRMSE = 0.08, R 2 = 0.78), and BC-pretreatment (RRMSE = 0.20, R 2 = 0.41) were considered as the final models for predicting As, Fe, and Cu, respectively. Wavebands at around 460, 1 400, 1 900, and 2 200 nm were selected as important spectral variables to construct final models. In conclusion, concentrations of heavy metals in contaminated soils could be indirectly assessed by soil spectra according to the correlation between the spectrally featureless components and Fe; therefore, spectral reflectance would be an alternative tool for monitoring soil heavy metals contamination.
基金supported by National Geoscience Database and Geological Survey of Iran
文摘The purpose of this study is to evaluate the Spectral Angle Mapper (SAM) classification method for determining the optimum threshold (maximum spectral angle) to unveil the hydrothermal mineral assemblages related to mineral deposits. The study area indicates good potential for Cu-Au porphyry, epithermal gold deposits and hydrothermal alteration well developed in arid and semiarid climates, which makes this region significant for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image processing analysis. Given that achieving an acceptable mineral mapping requires knowing the alteration patterns, petrochemistry and petrogenesis of the igneous rocks while considering the effect of weathering, overprinting of supergene alteration, overprinting of hypogene alteration and host rock spectral mixing, SAM classification was implemented for argillic, sericitic, propylitic, alunitization, silicification and iron oxide zones of six previously known mineral deposits: Maherabad, a Cu-Au porphyry system; Sheikhabad, an upper part of Cu-Au porphyry system; Khoonik, an Intrusion related Au system; Barmazid, a low sulfidation epithermal system; Khopik, a Cu-Au porphyry system; and Hanish, an epithermal Au system. Thus, the investigation showed that although the whole alteration zones are affected by mixing, it is also possible to produce a favorable hydrothermal mineral map by such complementary data as petrology, petrochemistry and alteration patterns.
基金supported by The National Key Research and Development Program Plane(No.2017YFC0601505)National Natural Science Foundation(No.41672325)Science&Technology Department of Sichuan Province Technology Project(No.2017GZ0393)
文摘The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.
基金Project supported by the National Key Technology Research and Development Program of China (Nos.40801167 and 2006BAD05B05)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX3-SW-356)the Foundation of the Chinese Academy of Sciences for the Field Stations of Resources and Environment
文摘Several studies have demonstrated that soil reflectance decreases with increasing soil moisture content, or increases when the soil moisture reaches a certain content; however, there are few analyses on the quantitative relationship between soil reflectance and its moisture, especially in the case of black soils in northeast China. A new moisture adjusting method was developed to obtain soil reflectance with a smaller moisture interval to describe the quantitative relationship between soil reflectance and moisture. For the soil samples with moisture contents ranging from air-dry to saturated, the changes in soil reflectance with soil moisture can be depicted using a cubic equation. Both moisture threshold (MT) and moisture inflexion (MI) of soil reflectance can also be determined by the equation. When the moisture range was smaller than MT, soil reflectance can be simulated with a linear model. However, for samples with different soil organic matter (OM), the parameters of the linear model varied regularly with the OM content. Based on their relationship, the soil moisture can be estimated from soil reflectance in the black soil region.
基金Under the auspices of the Natural Science Foundation of Hubei(No.2018CFB372)the Fundamental Research Funds for the Central Universities(No.2662016QD032)+2 种基金the Key Laboratory of Aquatic Plants and Watershed Ecology of Chinese Academy of Sciences(No.Y852721s04)the Chinese National Natural Science Foundation(No.41371227)the National Undergraduate Innovation and Entrepreneurship Training Program(No.201810504023,201810504030)
文摘Soil organic matter(SOM) is an important parameter related to soil nutrient and miscellaneous ecosystem services. This paper attempts to improve the performance of traditional partial least square regression(PLSR) model by considering the spatial autocorrelation and soil forming factors. Surface soil samples(n = 180) were collected from Honghu City located in the middle of Jianghan Plain, China. The visible and near infrared(VNIR) spectra and six environmental factors(elevation, land use types, roughness, relief amplitude, enhanced vegetation index, and land surface water index) were used as the auxiliary variables to construct the multiple linear regression(MLR), PLSR and geographically weighted regression(GWR) models. Results showed that: 1) the VNIR spectra can increase about 39.62% prediction accuracy than the environmental factors in predicting SOM; 2) the comprehensive variables of VNIR spectra and the environmental factors can improve about 5.78% and 44.90% relative to soil spectral models and soil environmental models, respectively; 3) the spatial model(GWR) can improve about 3.28% accuracy than MLR and PLSR. Our results suggest that the combination of spectral reflectance and the environmental variables can be used as the suitable auxiliary variables in predicting SOM, and GWR is a promising model for predicting soil properties.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474257 and 61605183
文摘By employing three reflecting volume Bragg gratings, a near-infrared 4-channel spectral-beam-combining system is demonstrated to present 720 W combined power with a combining efficiency of 94.7%. The combined laser beam is near-diffraction-limited with a beam factor M^2-1.54. During this 4-channel beam-combining process, no special active cooling measures are used to evaluate the volume Bragg gratings as combining elements are under the higher power laser operation. Thermal expansion and period distortion are verified in a 2 k W 2-channel beam-combining process, and the heat issue in the transmission case is found to be more remarkable than that in the diffraction e-se. Transmitted and diffracted beams experience wave-front aberrations with different degrees, thus leading to distinct beam deterioration.
基金Project supported by the Special Foundation for China Nonprofit Industry (Grant No. GYHY200706036)the National Excellent Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 40825008)the National Basic Research Program of China (Grant No. 2010CB833406)
文摘From first principles, we find that the radar threshold reflectivity between nonprecipitating clouds and precipitating clouds is strongly related to not only the cloud droplet number concentration but also the spectral dispersion of cloud droplet size distributions. The further investigation indicates that the threshold value is an increasing function of spectral dispersion and cloud droplet number concentration. These results may improve our understanding of the cloud-precipitation interaction and the aerosol indirect effect.
文摘Background: According to the diversification of the health needs and the expansion of health disparities, it is necessary to raise their reflective practice skills so that PHNs present more appropriate activities. The purpose of this study was to elucidate the realities of reflective practice skills among public health nurses in Japan and identify related factors. Methods: This study covered 1725 public health nurses in the Chugoku/Shikoku area. We conducted an anonymous self-completed questionnaire survey. As reflective practice skills (RPS), we adopted the six components of the six cycles of the Gibbs reflective model. We used the 20 criteria of the Scale for Practical Competence (SPC). We set 25 learning history/daily lifestyle items. The study plan was approved by the Ethics Committee of Okayama University. Results: We analyzed the 962 (55.8%) valid responses. Although years of experience as a public health nurse was highly correlated with practical skills as measured by SPC, with a correlation coefficient of 0.627, it was not closely related with RPS, with a correlation coefficient as low as 0.129. A logistic regression analysis of the eight learning history items and six daily lifestyle items associated with RPS, with the introduction of the high/low RPS groups as dependent variables, showed a convergence to five factors (odds ratio of 1.38 - 2.29). Conclusions: Going forward, we will need to consider how to accumulate learning on a daily basis and how to include positive health practice in PHN education, in connection with exploring the curriculum and method of training.
基金Supported by the National Natural Science Foundation of China ( No. 60872083 ) and the National High Technology Research and Development Program of China (No. 2007AA12Z149).
文摘This paper considers a problem of unsupervised spectral unmixing of hyperspectral data. Based on the Linear Mixing Model ( LMM), a new method under the framework of nonnegative matrix fac- torization (NMF) is proposed, namely minimum distance constrained nonnegative matrix factoriza- tion (MDC-NMF). In this paper, firstly, a new regularization term, called endmember distance (ED) is considered, which is defined as the sum of the squared Euclidean distances from each end- member to their geometric center. Compared with the simplex volume, ED has better optimization properties and is conceptually intuitive. Secondly, a projected gradient (PG) scheme is adopted, and by the virtue of ED, in this scheme the optimal step size along the feasible descent direction can be calculated easily at each iteration. Thirdly, a finite step ( no more than the number of endmem- bers) terminated algorithm is used to project a point on the canonical simplex, by which the abun- dance nonnegative constraint and abundance sum-to-one constraint can be accurately satisfied in a light amount of computation. The experimental results, based on a set of synthetic data and real da- ta, demonstrate that, in the same running time, MDC-NMF outperforms several other similar meth- ods proposed recently.
文摘To solve the problem of the spatial correlation for adjacent areas in traditional spectral unmixing methods, we propose an area-correlated spectral unmixing method based on Bayesian nonnegative matrix factorization. In the proposed me-thod, the spatial correlation property between two adjacent areas is expressed by a priori probability density function, and the endmembers extracted from one of the adjacent areas are used to estimate the priori probability density func-tions of the endmembers in the current area, which works as a type of constraint in the iterative spectral unmixing process. Experimental results demonstrate the effectivity and efficiency of the proposed method both for synthetic and real hyperspectral images, and it can provide a useful tool for spatial correlation and comparation analysis between ad-jacent or similar areas.
基金the National High-Technology Research and Development Program of China(Grant No.2003AA517020)
文摘We investigate the best performance for linear feedback control systems in the case that plant uncertainty is to be considered. First, we define an average integral square criterion of tracking error over a class of stochastic model errors. By utilizing spectral factorization to minimize the performance index, we derive an optimal controller design method and further study best performance in the presence of stochastic perturbation. The results can be used to evaluate optimal performance in practical control system designs.