The fluorescence spectra of three different dyes adsorbed on the tabular and cubic AgBr microcrystals are obtained by the picosecond time-resolved streak camera technique. The dependence of the ultrafast electron tran...The fluorescence spectra of three different dyes adsorbed on the tabular and cubic AgBr microcrystals are obtained by the picosecond time-resolved streak camera technique. The dependence of the ultrafast electron transferring from dye-aggre-gates to the conduction band of AgBr and the efficiency of spectral sensitization on different kinds of dyes with different concentrations is analyzed. Further more,the microcosmic mechanism of the sensitization process is discussed. It is found that the fluorescence decay curves are fitted very well by the double exponential func-tion,consisting of a slow component and a fast one with large amplitude. We con-sider this fast one mainly attributable to the electron transfer from dye J-aggre-gates to the conduction band of AgBr.展开更多
基金the National Natural Science Foundation of China (Grant No. 60478033)the Doctoral Foundation of Hebei Province of China (Grant No. B2003119)the Science and Technology Project of Hebei Province of China (Grant No. 05215102)
文摘The fluorescence spectra of three different dyes adsorbed on the tabular and cubic AgBr microcrystals are obtained by the picosecond time-resolved streak camera technique. The dependence of the ultrafast electron transferring from dye-aggre-gates to the conduction band of AgBr and the efficiency of spectral sensitization on different kinds of dyes with different concentrations is analyzed. Further more,the microcosmic mechanism of the sensitization process is discussed. It is found that the fluorescence decay curves are fitted very well by the double exponential func-tion,consisting of a slow component and a fast one with large amplitude. We con-sider this fast one mainly attributable to the electron transfer from dye J-aggre-gates to the conduction band of AgBr.